55.8k views
5 votes
Find a point on the y-axis that is equidistant from the points (8, −8) and (1, 1).

1 Answer

5 votes


\text{We know that any point on the y-axis is of the form (0, y),}\\ \text{because on y-axis we have x=0.}\\ \\ \text{So let (0, y) be the point on the y-axis that is equidistance from}\\ \text{the points }(8,-8) \text{ and }(1,1)\\ \\ \text{so using the distance formula, we have}\\ \\ \text{Distance between (0, y) and }(8,-8)=\text{Distance between (0,y) and }(1,1)\\ \\ \Rightarrow √((0-8)^2+(y-(-8))^2)=√((0-1)^2+(y-1)^2)


\Rightarrow √(64+(y+8)^2)=√(1+(y-1)^2)\\ \\ \text{Squaring both sides, we get}\\ \\ (√(64+(y+8)^2))^2=(√(1+(y-1)^2))^2\\ \\ \Rightarrow 64+(y+8)^2=1+(y-1)^2\\ \\ \Rightarrow 64+(y^2+16y+64)=1+(y^2-2y+1)\\ \\ \Rightarrow y^2+16y+128=y^2-2y+2\\ \\ \Rightarrow y^2+16y-y^2+2y=2-128\\ \\ \Rightarrow 18y=-126\\ \\ \Rightarrow y=(-126)/(18)\\ \\ \Rightarrow y=-7

So the point on the y-axis that is equidistant from the points (8,-8) and (1,1) is: (0,-7)

User Juyoung
by
8.0k points