107k views
0 votes
Find the local maxima of f ( x ) = 2 x 3 − 30 x 2 + 126 x + 2

User Miloserdow
by
7.4k points

1 Answer

4 votes


\text{Consider the function}\\ \\ f(x)=2x^3-30x^2+126x+2\\ \\ \text{To find the local maxima, first we find the critical points.}\\ \text{for critical points set the first derivative 0 and solve for x.}\\ \text{so using power rule of derivatives, we have}\\ \\ f'(x)=2(3x^2)-30(2x)+126(1)+0


\Rightarrow f'(x)=6x^2-60x+126\\ \\ \text{now for critical points, we set }f'(x)=0\\ \\ \Rightarrow 6x^2-60x+126=0\\ \\ \Rightarrow 6(x^2-10x+21)=0\\ \\ \Rightarrow x^2-10x+21=0\\ \\ \Rightarrow x^2-7x-3x+21=0\\ \\ \Rightarrow x(x-7)-3(x-7)=0\\ \\ \Rightarrow (x-3)(x-7)=0


\Rightarrow x-3=0, \ \ \ \ \ \ \ \ \text{ and } \ \ \ \ \ x-7=0\\ \\ \Rightarrow x=3, \ \ \ \ \ \ \ \ \text{ and } \ \ \ \ \ x=7\\ \\ \text{now to check for maximum minimum, we do second derivative test.}\\ \\ f''(x)=12x-60\\ \\ \text{at x=3, second derivative is}\\ \\ f''(3)=12(3)-60=-24 <0, \text{ so local maximum occur at x=3}\\ \\ \text{and at x=7, second derivative is ,}


f''(7)=12(7)-60=24>0, \text{ so local minimum occur at x=7.}\\ \\ \text{hence the local maximum value of the function is}\\ \\ f(3)=2(3)^3-30(3)^2+126(3)+2=164

Hence the local maxima of f is: 164

User Glenny
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories