![[\text{C}_4 \text{H}_6] \approx 5.2 * 10^(-3) \; \text{mol} \cdot \text{L}^(-1)](https://img.qammunity.org/2019/formulas/chemistry/college/u02ua3qvu73966a50qey6urvnsr0t821pk.png)
Step-by-step explanation:
From the rate law:
![\text{d} [\text{C}_4 \text{H}_6] /\text{d}t = - 0.014 \cdot [\text{C}_4 \text{H}_6]^(2)](https://img.qammunity.org/2019/formulas/chemistry/college/8qsbvp0h3f3kyup073l86c192uv1n4a39a.png)
where
the reactant concentration, in
(or equivalently,
![\text{M}](https://img.qammunity.org/2019/formulas/chemistry/college/wzkozxa80jszgj6x1fbe9cuxcuouu5lnqx.png)
the time into the reaction process, in seconds, and
the reaction rate in differential form.
Note the negative sign in front of the right hand side of the equation. Rearrange the rate law expression to separate the two variables,
- concentration
and - time
.
![-[\text{C}_4 \text{H}_6]^(-2) \cdot \text{d} [\text{C}_4 \text{H}_6] = 0.014 \cdot \text{d}t](https://img.qammunity.org/2019/formulas/chemistry/college/b0wk5kczt9o5yqz2rli3egghlvyd60jj8u.png)
Implicitly integrate both sides of the expression (with the power rule) to obtain the general expression (i.e., the one with the arbitary constant "
") for concentration
at given time
:
![\int(- [\text{C}_4 \text{H}_6]^(-2) )\cdot \text{d} [\text{C}_4 \text{H}_6] = \int 0.014 \cdot \text{d}t](https://img.qammunity.org/2019/formulas/chemistry/college/p8l9dfzadqd5htuq6biwrc6sopsvurelec.png)
![[\text{C}_4 \text{H}_6]^(-1) = 0.014 \cdot \text{t} + C](https://img.qammunity.org/2019/formulas/chemistry/college/p0iz53e6gqgdfaphqutjq37my7v6lq373p.png)
![[\text{C}_4 \text{H}_6] = 1/ (0.014 \cdot \text{t} + C)](https://img.qammunity.org/2019/formulas/chemistry/college/vjik3du7w1t5v52ai4r3aqir3iaj4or1d2.png)
Now, solve for the value of
for this particular configuration (i.e., with an initial,
concentration
, as seen in the question)
![1/ (0.014 \cdot \text{t} + C) = 1\; /\; C = [\text{C}_4 \text{H}_6]_{\text{initial}} = 0.025](https://img.qammunity.org/2019/formulas/chemistry/college/khuqqwfvwloi8yni21lyxnari85tchm6gw.png)
![C = 1/0.025 = 40.0](https://img.qammunity.org/2019/formulas/chemistry/college/u87ypcdjrpxmveog9tp3cro2pkxlsa6ktn.png)
Thus, the
concentration at time
given an initial
concentration of
would be
![[\text{C}_4 \text{H}_6](t) = 1/(0.014 \cdot t +40)](https://img.qammunity.org/2019/formulas/chemistry/college/fa8js490gja1h50xpi6wcucok9260tpbxz.png)
where again,
the time into the reaction in seconds.
The question is asking for the concentration at
![t = 3 \; \text{hrs} = 3 * 3600 \; \text{seconds}](https://img.qammunity.org/2019/formulas/chemistry/college/2tgqq31jc4y0ckiblzdo3fl1986bouwzyl.png)
![[\text{C}_4\text{H}_6 ](10800) = 5.2 * 10^(-3) \; \text{mol} \cdot \text{L}^(-1)](https://img.qammunity.org/2019/formulas/chemistry/college/8x3arlt0eov2zcqcmxeyiaorpphl2pfqla.png)
Reference:
Lannah Lua, Ciara Murphy, and Victoria Blanchard, "Second-Order Reactions," Libretext Chemistry