17.0k views
0 votes
How do you simplify these problems ?

How do you simplify these problems ?-example-1

1 Answer

7 votes


\bf ~~~~~~~~~~~~\textit{negative exponents}\\\\a^(-n) \implies \cfrac{1}{a^n}\qquad \qquad\cfrac{1}{a^n}\implies a^(-n)\qquad \qquad a^n\implies \cfrac{1}{a^(-n)}\\\\[-0.35em]\rule{34em}{0.25pt}\\\\\cfrac{2x^3y^3}{4y^2}\implies \cfrac{2}{4}\cdot \cfrac{x^3y^3}{y^2}\implies \cfrac{1}{2}\cdot x^3y^3y^(-2)\implies \cfrac{1}{2}\cdot x^3y^(3-2)\implies \cfrac{x^3y}{2}\\\\~\dotfill\\\\



\bf \left(\cfrac{x^(-8)}{y^(11)} \right)^(-2)\implies \left(\cfrac{y^(11)}{x^(-8)} \right)^2\implies \stackrel{\textit{distributing the exponent}}{\left( \cfrac{y^(11\cdot 2)}{x^(-8\cdot 2)} \right)}\\\\\\\cfrac{y^(22)}{x^(-16)}\implies y^(22)x^(16)\\\\~\dotfill



\bf \cfrac{(2x^3)(x^4)^2}{8x^(11)}\implies \cfrac{(2x^3)(x^(4\cdot 2))}{8x^(11)}\implies \cfrac{2x^3x^8}{8x^(11)}\implies \cfrac{2x^(3+8)}{8x^(11)}\implies \cfrac{2x^(11)}{8x^(11)}\\\\\\\cfrac{2}{8}\cdot \cfrac{x^(11)}{x^(11)}\implies \cfrac{1}{4}\cdot 1\implies \cfrac{1}{4}

User Fuego DeBassi
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories