Breaking stuff let {xi} n i=1 be a sample of random variables of size n with the property that xi ∼ n (µ, σ2 ) and cov(xi , xj ) = ρσ for all pairs i, j.
a.solve for the mean and variance of x¯.
b.what happens to the variance of x¯ as n → ∞?
c.why do the clt and lln fail in this situation?
d.using the provided code, simulate s = 1000 values of x¯ for n = 50, 100, 500. in all three cases calculate the mean and variance of the resulting distribution. create histograms for each. in this code, σ = 1 and ρ = .4. how does the variance for each n compare to the formula from part (a)?