Given expression is sin(45)sin(15)
this expression best matches with left side of the formula:
2 sin(A) sin(B)= cos(A-B) - cos(A+B)
so we can plug given angles 45 and 15 there
2 sin(45) sin(15)= cos(45-15) - cos(45+15)
2 sin(45) sin(15)= cos(30) - cos(60)
sin(45) sin(15)= [cos(30) - cos(60)]/2
We are getting negative sign and cos in the solution while none of the given choices have same situation so answer will be none of them.
-----------
For cos(75)-cos(15), we will use formula:
![\cos\left(A\right)-\cos\left(B\right)=-2\sin\left((A+B)/(2)\right)\sin\left((A-B)/(2)\right)](https://img.qammunity.org/2019/formulas/mathematics/high-school/pj80d7flgsxhq59r0lqf9v9zd1273syjfl.png)
Now plug the given angles
![\cos\left(75\right)-\cos\left(15\right)=-2\sin\left((75+15)/(2)\right)\sin\left((75-15)/(2)\right)](https://img.qammunity.org/2019/formulas/mathematics/high-school/k88ari70wc46tjp67jgnk6e2vb4lqy1vqc.png)
![\cos\left(75\right)-\cos\left(15\right)=-2\sin\left((90)/(2)\right)\sin\left((60)/(2)\right)](https://img.qammunity.org/2019/formulas/mathematics/high-school/uz1rypefjn5ei1oo1nmc45a96k07o75y5a.png)
![\cos\left(75\right)-\cos\left(15\right)=-2\sin\left(45\right)\sin\left30\right)](https://img.qammunity.org/2019/formulas/mathematics/high-school/oz9a0rl5xe8y01z8ge22dkq8l8wovivbqq.png)
Hence choice B is correct.