104k views
0 votes
Find the slope dy/dx of the polar curve r = 3 / (2 - cos(theta)) at the point (r, theta) = (3/2, pi/2)

User Gao
by
8.3k points

1 Answer

6 votes

Given polar equation is


r=(3)/(2-\cos\left(\theta\right))

for polar equation we use


x=r\cos\left(\theta\right)

and
y=r\sin\left(\theta\right)

plug the given value of r into these equations we get:



x=r\cos\left(\theta\right)=(3\cos\left(\theta\right))/(2-\cos\left(\theta\right))



y=r\sin\left(\theta\right)=(3\sin\left(\theta\right))/(2-\cos\left(\theta\right))


find derivative with respect to theta



(dx)/(d\theta)=-(6\sin\left(\theta\right))/(\left(2-\cos\left(\theta\right)\right)^2)



(dy)/(d\theta)=-(3\left(\sin^2\left(\theta\right)+\cos^2\left(\theta\right)-2\cos\left(\theta\right)\right))/(\left(2-\cos\left(\theta\right)\right)^2)


now slope is given by formula


m=((dy)/(d\theta))/((dx)/(d\theta))

plug the above values into slope formula and the given angle theta = pi/2


m=(-(3\left(\sin^2\left(\theta\right)+\cos^2\left(\theta\right)-2\cos\left(\theta\right)\right))/(\left(2-\cos\left(\theta\right)\right)^2))/(-(6\sin\left(\theta\right))/(\left(2-\cos\left(\theta\right)\right)^2))

plugging theta=pi/2 and simplifying it gives

m=0.5

Hence final answer is m=0.5

User Tomisha
by
7.2k points

No related questions found