104k views
0 votes
Find the slope dy/dx of the polar curve r = 3 / (2 - cos(theta)) at the point (r, theta) = (3/2, pi/2)

User Gao
by
8.3k points

1 Answer

6 votes

Given polar equation is


r=(3)/(2-\cos\left(\theta\right))

for polar equation we use


x=r\cos\left(\theta\right)

and
y=r\sin\left(\theta\right)

plug the given value of r into these equations we get:



x=r\cos\left(\theta\right)=(3\cos\left(\theta\right))/(2-\cos\left(\theta\right))



y=r\sin\left(\theta\right)=(3\sin\left(\theta\right))/(2-\cos\left(\theta\right))


find derivative with respect to theta



(dx)/(d\theta)=-(6\sin\left(\theta\right))/(\left(2-\cos\left(\theta\right)\right)^2)



(dy)/(d\theta)=-(3\left(\sin^2\left(\theta\right)+\cos^2\left(\theta\right)-2\cos\left(\theta\right)\right))/(\left(2-\cos\left(\theta\right)\right)^2)


now slope is given by formula


m=((dy)/(d\theta))/((dx)/(d\theta))

plug the above values into slope formula and the given angle theta = pi/2


m=(-(3\left(\sin^2\left(\theta\right)+\cos^2\left(\theta\right)-2\cos\left(\theta\right)\right))/(\left(2-\cos\left(\theta\right)\right)^2))/(-(6\sin\left(\theta\right))/(\left(2-\cos\left(\theta\right)\right)^2))

plugging theta=pi/2 and simplifying it gives

m=0.5

Hence final answer is m=0.5

User Tomisha
by
7.2k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories