Final answer:
The equation of the line in slope-intercept form that passes through the point (4,1) with a slope of -3/2 is y = (-3/2)x + 7.
Step-by-step explanation:
The student asked for an equation of a line in slope-intercept form that passes through the point (4,1) with a slope of -3/2. The slope-intercept form of a line is expressed as y = mx + b, where m is the slope and b is the y-intercept. Given that we have a point and a slope, we can use the point-slope form y - y1 = m(x - x1) to plug in our values and then solve for y to put it into slope-intercept form.
Starting with the point-slope form:
y - 1 = (-3/2)(x - 4)
We distribute the slope on the right-hand side:
y - 1 = (-3/2)x + 6
Add 1 to both sides to isolate y:
y = (-3/2)x + 7
Now, we have the line's equation in slope-intercept form where the slope is -3/2 and the y-intercept is 7.