Answer:
Option C.
Explanation:
Given information: Line PA and PB tangent to the circle,
.
Draw the radius from the point A and B.
The tangent to a circle is perpendicular to the radius at the point of tangency.
![\angle PAO=\angle PBO=90^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/college/2p4mu81jaasqxjad5qikoa8bbcdpoo9dfq.png)
OAPB is a quadrilateral and the sum of all interior angles of a quadrilateral is 360°.
![\angle AOB+\angle PAO+\angel APB+\angle PBO=360](https://img.qammunity.org/2019/formulas/mathematics/college/3i82iesff48aqlkw72swl2nwk2b7ys1zg9.png)
![\angle AOB+90+36+90=360](https://img.qammunity.org/2019/formulas/mathematics/college/3mbyohuciu4k4s0sysbafuafx1urw150ao.png)
![\angle AOB+216=360](https://img.qammunity.org/2019/formulas/mathematics/college/c10aaqcfoh9t866ws16k4pzfegjlo0k11b.png)
Subtract 216 from both sides.
![\angle AOB=360-216](https://img.qammunity.org/2019/formulas/mathematics/college/qf76nrm2sp7ohcv95dqdg71kjya5qi4lzb.png)
![\angle AOB=144](https://img.qammunity.org/2019/formulas/mathematics/college/20y7yerjx4zaqwdc3mvnv7uktym6piq0mc.png)
The measure of arc AB is 144°.
Therefore, the correct option is C.