485,140 views
16 votes
16 votes
2. Find the distance between points (1,3) and (9,18) on the coordinate plane.

Show work

User SmellyCat
by
2.8k points

2 Answers

22 votes
22 votes

Answer:


d =\sqrt{(x2 - x1) ^(2) + (y2 - y1) ^(2) } \\ d = \sqrt{ {(9 - 1) }^(2) + {(18 - 3)}^(2) } \\ d = \sqrt{ {8}^(2) + 15 ^(2) } \\ d = √(64 + 225 ) \\ d = √(289) \\ d = 17

User Proffesor
by
3.0k points
23 votes
23 votes

Answer:

The distance between points (1,3) and (9,18) is 17.

Step-by-step Step-by-step explanation:

Here's the required formula to find distance between points (1,3) and (9,18) :


\star{\small{\underline{\boxed{\sf{Distance = \sqrt{\Big(x_(2) - x_(1) \Big)^(2) + \Big(y_(2) - y_(1) \Big)^(2)}}}}}}

Here, we have provided :


\begin{gathered}\begin{gathered} \footnotesize\rm {\underline{\underline{Where}}}\begin{cases}& \sf x_2 = 9\\ & \sf x_1 = 1\\ & \sf y_2 = 18\\& \sf y_1 = 3\end{cases} \end{gathered}\end{gathered}

Substituting all the given values in the formula to find the distance between points (1,3) and (9,18) :


\implies{\small{\sf{d = \sqrt{\Big(x_(2) - x_(1) \Big)^(2) + \Big(y_(2) - y_(1) \Big)^(2)}}}}


\implies{\small{\sf{d = \sqrt{\Big(9 - 1\Big)^(2) + \Big(18 - 3\Big)^(2)}}}}


\implies{\small{\sf{d = \sqrt{\Big( \: 8 \: \Big)^(2) + \Big( \: 15 \: \Big)^(2)}}}}


\implies{\small{\sf{d = √(\Big( 8 * 8\Big) + \Big( 15 * 15\Big))}}}


\implies{\small{\sf{d = √(\big( \: 64 \: \big) + \big( \: 225 \: \big))}}}


\implies{\small{\sf{d = √(64 + 225)}}}


\implies{\small{\sf{d = √(289)}}}


\implies{\sf{\underline{\underline{\red{d = 17}}}}}

Hence, the distance between points (1,3) and (9,18) is 17.


\rule{300}{2.5}

User Evgeny
by
3.3k points