WE need to find the probability (
![(Junior)/(Boy)](https://img.qammunity.org/2019/formulas/mathematics/high-school/gtmjjaoq45pornqesyspftk41lliby9an5.png)
We know
![P((A)/(B))= (P(A and B))/(P(B))](https://img.qammunity.org/2019/formulas/mathematics/high-school/nytdm5cypt49f0b23y3xhuvw5vvcyy9pzd.png)
P(
)=
![(P(Junior and Boy))/((Boy))](https://img.qammunity.org/2019/formulas/mathematics/high-school/vbgb1szxuysvr9e9l1hpmp7uyumuog0vbf.png)
First we find P(Boy)
From the table we can see that we have 12 boys out of (12+18=30) students
So P(Boy) =
![(12)/(30)](https://img.qammunity.org/2019/formulas/mathematics/high-school/jqhf96sra5d3yixsu2jsrrzlucia9dwozb.png)
Now we find the intersection of Junior and Boy
WE look at the Junior row and boys column that is 2
{P(Junior ∩ Boy) =
![(2)/(30)](https://img.qammunity.org/2019/formulas/mathematics/high-school/gjicexmvkz9gdlgnnxwnxod1mfxyyp3n7e.png)
P(
)=
![(P(Junior and Boy))/((Boy))](https://img.qammunity.org/2019/formulas/mathematics/high-school/vbgb1szxuysvr9e9l1hpmp7uyumuog0vbf.png)
P(
)=
![((2)/(30))/((12)/(30))](https://img.qammunity.org/2019/formulas/mathematics/high-school/adi510mt5lr9429t9o0mth6w4lb3irel5w.png)
=
=
![(1)/(6)](https://img.qammunity.org/2019/formulas/mathematics/college/yy8097piiceo70bmsp5buca3g8bbyn2qmy.png)
P(
) =
![(1)/(6)](https://img.qammunity.org/2019/formulas/mathematics/college/yy8097piiceo70bmsp5buca3g8bbyn2qmy.png)