185k views
5 votes
Solve for x.


5^(-x-3) =8^(5x)
Write the exact answer using base-10 logarithms.

User Ckuessner
by
8.6k points

2 Answers

3 votes


5^((-x-3))=8^(5x) \implies \\5^((-x-3))=8^(5x) \implies \\\log5^((-x-3))=\log{8^(5x)} \implies \\(-x-3)\log{5}=5x\log{8} \implies \\-x\log{5}-3\log{5}=5x\log{8}\implies \\-x\log{5}-5x\log{8}=3\log{5}\implies \\ -x(\log{5}+5\log{8}})=3\log{5} \implies \\-x=\frac{3\log{5}}{\log{5}+5\log{8}}\implies \\x=\frac{-3\log{5}}{\log{5}+5\log{8}}

User Mojtaba Nava
by
8.8k points
2 votes

Hello,


5^(-x-3)=8^(5x)\\\Rightarrow\ (-x-3)\ Log(5)=5x\ Log(8)\\\Rightarrow\ -xLog(5)-3Log(5)=5x Log(8)\\ \Rightarrow\ x(5 Log(8)+Log(5))=-3Log(5)\\ \Rightarrow\ x=(-3\ Log(5))/(Log(5)+5\ Log(8))\\x\approx{-0.40213677...}

User Patrick Mevzek
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories