Answer:
![W\leq 38\ ft](https://img.qammunity.org/2019/formulas/mathematics/high-school/8fhv1bn4g2djw47czzlz9t2prn9hkzva5q.png)
The maximum width must be
![38\ ft](https://img.qammunity.org/2019/formulas/mathematics/high-school/aifchcicat5f7g2bmzboyqfy05ynwshva5.png)
Explanation:
Let
L ----> the length of the rectangular pool
W ---> The width of the rectangular pool
we know that
![P=2(L+W)](https://img.qammunity.org/2019/formulas/mathematics/high-school/o3pmb67h7qlfnieztfujz2ghzli9bwc5ym.png)
so
----> inequality A
we have
![L=22\ ft](https://img.qammunity.org/2019/formulas/mathematics/high-school/1pjkaqz33siqfwwl4qms84t01gyvjeebxe.png)
substitute the value of L in the inequality A
![2(W+22)\leq 120](https://img.qammunity.org/2019/formulas/mathematics/high-school/fbbefa47b8tz42kplpb4nw4jt3u7103kfp.png)
simplify
![(W+22)\leq 60](https://img.qammunity.org/2019/formulas/mathematics/high-school/qpfdkynxk35ncj8fvs9u2a8r52k9afviqg.png)
![W\leq 60-22](https://img.qammunity.org/2019/formulas/mathematics/high-school/kdxin9xd0og46b25d5agbpgzac91a715fq.png)
![W\leq 38\ ft](https://img.qammunity.org/2019/formulas/mathematics/high-school/8fhv1bn4g2djw47czzlz9t2prn9hkzva5q.png)
The maximum width must be
![38\ ft](https://img.qammunity.org/2019/formulas/mathematics/high-school/aifchcicat5f7g2bmzboyqfy05ynwshva5.png)