I have a Portuguese Water Dog who's translating for me.
a.
![\sin x + \cos x = -1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/crsnksa2qk15qebf6uusphpag87k6pagh1.png)
Usually I'll say the linear combination of a sine and a cosine of the same angle is a phase shift and a dilation etc. but here we can take a shortcut. The only time we'll get -1 as the sum is when one of the terms is -1, then the other term will be zero because of
.
![\sin x = -1 \textrm{ or } \cos x = -1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/9p3i3c4kmqoacxfs3atim6itvbff3gmvxh.png)
Answer: x = 3π/2 or x=π
b.
![\cos x = \frac 1 2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/mjleq1mcwumat87it0s74orkdjo7erxos7.png)
That's the biggest cliche of trig 30/60/90 so x=plus or minus 60 degrees. We're told we're in the fourth quadrant, so
![\sin x = - (√(3))/(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/l7jrrb73nmsgkh54e1ei2tq9760p5scxxc.png)
Answer: -√3/2
c.
This time we're in the third quadrant, negative sine
![\cos^2 x + \sin ^2 x = 1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/kkuboyxis0uzbjssm6iaar8jlk1blb3lu1.png)
![\cos x = - √( 1- \sin ^2 x) = -√(1 - (-3/4)^2) = -√(1-9/16) = -√(7/16) = -\frac 1 4 \sqrt 7](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8iiegnbnitgtxdr80ezuplx9dtn9nou2dl.png)
Answer: -(1/4)√7
d.
Second quadrant positive sine, negative tangent
![\sin x = √(1 - \cos^2x) = \sqrt{ 1 - (-3 √(2)/5)^2} = √(1 - 18/25)=\frac 1 5 √(7)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/tiwcimygghfm59x3e310fwny7esa8mcwo0.png)
![\tan x = (\sin x)/(\cos x) = (√(7)/5 )/(-3 √(2) / 5) = -(√(14))/(6)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/cxmiibrrk4rnfg9isicwremvn4981p5phq.png)
Answer: sin x = √7/5, tan x = -√14/6
e.
We're given the tangent and the sine
![\tan x = (\sin x )/(\cos x)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/90b6lc94x956qv28a73vzq0uvfnbxr5nke.png)
![\cos x = (\sin x )/(\tan x ) = (√(5)/5)/(-1/2) = - \frac 2 5 √(5)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/f8d0x8svpnspuwedskmg6f2wyyo58c83u5.png)
Answer: (-2/5)√5