126k views
0 votes
Match each expression to its equivalent expression with a rational denominator.

Match each expression to its equivalent expression with a rational denominator.-example-1

2 Answers

4 votes

\dfrac{1}{\sqrt[4]{3x^3y^5}}\cdot\dfrac{\sqrt[4]{3^3xy^3}}{\sqrt[4]{3^3xy^3}}=\dfrac{\sqrt[4]{3^3xy^3}}{\sqrt[4]{3^4x^4y^8}}=\dfrac{\sqrt[4]{3^3xy^3}}{{\sqrt[4]{3^4x^4(y^2)^4}}}=\dfrac{\sqrt[4]{3^3xy^3}}{3xy^2}

\dfrac{3}{\sqrt[4]{27x^{11}y^{13}}}=\dfrac{3}{\sqrt[4]{3^3x^{11}y^{13}}}=\dfrac{3}{\sqrt[4]{27x^{11}y^{13}}}\cdot\dfrac{\sqrt[4]{3xy^3}}{\sqrt[4]{3xy^3}}=\dfrac{3\sqrt[4]{3xy^3}}{\sqrt[4]{3^4x^{12}y^{16}}}\\\\=\dfrac{3\sqrt[4]{3xy^3}}{\sqrt[4]{3^4(x^3)^4(y^4)^4}}=\dfrac{3\sqrt[4]{3xy^3}}{3x^3y^4}=\dfrac{\sqrt[4]{3xy^3}}{x^3y^4}

\dfrac{2}{\sqrt[6]{2x^7y^5}}=\dfrac{2}{\sqrt[6]{2x^7y^5}}\cdot\dfrac{\sqrt[6]{2^5x^5y}}{\sqrt[6]{2^5x^5y}}=\dfrac{2\sqrt[6]{2^5x^5y}}{\sqrt[6]{2^6x^{12}y^6}}=\dfrac{2\sqrt[6]{2^5x^5y}}{\sqrt[6]{2^6(x^2)^6y^6}}\\\\=\dfrac{2\sqrt[6]{2^5x^5y}}{2x^2y}=\dfrac{\sqrt[6]{32x^5y}}{x^2y}

\dfrac{4}{\sqrt[6]{32x^5y^9}}=\dfrac{4}{\sqrt[6]{2^5x^5y^9}}\cdot\dfrac{\sqrt[6]{2xy^3}}{\sqrt[6]{2xy^3}}=\dfrac{4\sqrt[6]{2xy^3}}{\sqrt[6]{2^6x^6y^{12}}}=\dfrac{4\sqrt[6]{2xy^3}}{\sqrt[6]{2^6x^6(y^2)^6}}\\\\=\dfrac{4\sqrt[6]{2xy^3}}{2xy^2}=\dfrac{2\sqrt[6]{2xy^3}}{xy^2}}

\text{Used:}\\\\\sqrt[n]{a^n}=a\\\\(a^n)^m=a^{n\cdot m}\\\\a^n\cdot a^m=a^{n+m}\\\\\sqrt[n]{a\cdot b}=\sqrt[n]a\cdot\sqrt[n]b

User Alex Kennberg
by
7.7k points
4 votes


\frac{1}{\sqrt[4]{3x^3y^5}}\cdot\frac{\sqrt[4]{3^3xy^3}}{\sqrt[4]{3^3xy^3}}=\frac{\sqrt[4]{3^3xy^3}}{\sqrt[4]{3^4x^4y^8}}=\frac{\sqrt[4]{3^3xy^3}}{{\sqrt[4]{3^4x^4(y^2)^4}}}=\frac{\sqrt[4]{3^3xy^3}}{3xy^2}


\frac{3}{\sqrt[4]{27x^(11)y^(13)}}=\frac{3}{\sqrt[4]{3^3x^(11)y^(13)}}=\frac{3}{\sqrt[4]{27x^(11)y^(13)}}\cdot\frac{\sqrt[4]{3xy^3}}{\sqrt[4]{3xy^3}}=\frac{3\sqrt[4]{3xy^3}}{\sqrt[4]{3^4x^(12)y^(16)}}\\\\=\frac{3\sqrt[4]{3xy^3}}{\sqrt[4]{3^4(x^3)^4(y^4)^4}}=\frac{3\sqrt[4]{3xy^3}}{3x^3y^4}=\frac{\sqrt[4]{3xy^3}}{x^3y^4}


\frac{2}{\sqrt[6]{2x^7y^5}}=\frac{2}{\sqrt[6]{2x^7y^5}}\cdot\frac{\sqrt[6]{2^5x^5y}}{\sqrt[6]{2^5x^5y}}=\frac{2\sqrt[6]{2^5x^5y}}{\sqrt[6]{2^6x^(12)y^6}}=\frac{2\sqrt[6]{2^5x^5y}}{\sqrt[6]{2^6(x^2)^6y^6}}\\\\=\frac{2\sqrt[6]{2^5x^5y}}{2x^2y}=\frac{\sqrt[6]{32x^5y}}{x^2y}


\frac{4}{\sqrt[6]{32x^5y^9}}=\frac{4}{\sqrt[6]{2^5x^5y^9}}\cdot\frac{\sqrt[6]{2xy^3}}{\sqrt[6]{2xy^3}}=\frac{4\sqrt[6]{2xy^3}}{\sqrt[6]{2^6x^6y^(12)}}=\frac{4\sqrt[6]{2xy^3}}{\sqrt[6]{2^6x^6(y^2)^6}}\\\\=\frac{4\sqrt[6]{2xy^3}}{2xy^2}=\frac{2\sqrt[6]{2xy^3}}{xy^2}}


\text{Used:}\\\\\sqrt[n]{a^n}=a\\\\(a^n)^m=a^(n\cdot m)\\\\a^n\cdot a^m=a^(n+m)\\\\\sqrt[n]{a\cdot b}=\sqrt[n]a\cdot\sqrt[n]b

User Pelicer
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories