we are given
equation of curve is
![x=-2y^{(3)/(2)}](https://img.qammunity.org/2019/formulas/mathematics/college/p6v5uxwsa3vah00c5r8zhxyl55qp1uikjh.png)
Bound is
from y=0 to y=9
now, we can use arc length formula
![L=\int\limits^a_b {\sqrt{1+((dx)/(dy))^2}} \, dy](https://img.qammunity.org/2019/formulas/mathematics/college/j27g3982rb6eeyvvxg771to3u6y5grn42e.png)
Firstly , we will find dx/dy
that is derivative
![x=-2y^{(3)/(2)}](https://img.qammunity.org/2019/formulas/mathematics/college/p6v5uxwsa3vah00c5r8zhxyl55qp1uikjh.png)
![(dx)/(dy) =-2*(3)/(2) *y^{(1)/(2)}](https://img.qammunity.org/2019/formulas/mathematics/college/hl2xv87e8zqsotr17mjimdmgz1ynruu1ax.png)
now, we can simplify it
![(dx)/(dy) =-3y^{(1)/(2)}](https://img.qammunity.org/2019/formulas/mathematics/college/qp8bkxznxpa8szp2x93kc9402ko4y0ikjc.png)
Arc length:
now, we can plug it in arc length formula
and we get
![L=\int\limits^0_9 {\sqrt{1+(-3y^{(1)/(2)})^2}} \, dy](https://img.qammunity.org/2019/formulas/mathematics/college/1vdj9p5053dbfbbgwc7jlu3st6lfcl7uqq.png)
now, we can solve it
Firstly , we will solve integral
![\int \sqrt{1+\left(-3√(y)\right)^2}dy](https://img.qammunity.org/2019/formulas/mathematics/college/c29f1vk5ndl06cdmfpfh5m5l36h2a2ujur.png)
![=\int √(9y+1)dy](https://img.qammunity.org/2019/formulas/mathematics/college/5hl9mbpmqnnwu6wmgelp69s8wy8k3inn13.png)
![=(2)/(27)\left(9y+1\right)^{(3)/(2)}](https://img.qammunity.org/2019/formulas/mathematics/college/4fztpkt8tyt9wrg92z744c293y9o49ut2t.png)
now, we can plug bounds
and we get
![=(164√(82))/(27)-(2)/(27)](https://img.qammunity.org/2019/formulas/mathematics/college/wzqt9ld7x20844et2cgipsriaq1kft65dc.png)
...........Answer