Answer:
Option A. -1023
Explanation:
If we form the finite geometric sequence by using expression
by putting n = 1, 2, 3, 4, 5.
Sequence will be = -3, -12, -48, -192, -768
Now we can either do the total of all numbers of the sequence or use the formula to calculate the sum.
Total of terms = (-3) + (-12) + (-48) + (-192) + (-768) = -1023
Or by using formula
Sum =
![a.((1-r^(n)))/(1-r)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/gi0doz38zsjpz0l3zp6ukywyoim08jxa0k.png)
Here a = -3
r = (-12)/(-3) = 4
n = 5
Therefore sum of the sequence =
![(-3).((1-4^(5)) )/(1-4)= ((-3).(-1023))/((-3))=-1023](https://img.qammunity.org/2019/formulas/mathematics/middle-school/1reev1x3ivzlazvkfxnjbuf6y3ohu10ljr.png)
Option A is the answer.