279,721 views
20 votes
20 votes

( \zeta(2))/(2) - \frac{ \zeta(3)}3 + ( \zeta(4))/(4) - ( \zeta(5))/(5) + \cdots \cdots \\

User Alan Hinchcliffe
by
3.1k points

1 Answer

28 votes
28 votes

Recall the Weierstrass product definition of the gamma function,


\displaystyle \frac1{\Gamma(z)} = ze^(\gamma z) \prod_(n=1)^\infty \left(1+\frac zn\right) e^(-z/n)

from which we can obtain the log-gamma (i.e. logarithm of gamma) function,


\displaystyle -\ln\Gamma(z) = \ln(z) + \gamma z + \sum_(n=1)^\infty \left(\ln\left(1 + \frac zn\right) - \frac zn\right)

where
\gamma is the Euler-Mascheroni constant.

Let
z=1, so that


\displaystyle \gamma = \sum_(n=1)^\infty \left(\frac1n - \ln\left(1 + \frac 1n\right)\right)

Recall the power series


\displaystyle \ln(1 + x) = - \sum_(n=1)^\infty \frac{(-x)^n}n

Along with the definition of the Riemann zeta function,


\displaystyle \zeta(a) = \sum_(b=1)^\infty \frac1{b^a}

we find that


\displaystyle \gamma = \sum_(n=1)^\infty \left(\frac1n + \sum_(m=1)^\infty \frac1m\left(-\frac1n\right)^m\right) \\\\ ~~~~ = \sum_(n=1)^\infty \sum_(m=2)^\infty \frac1m \left(-\frac1n\right)^m \\\\ ~~~~ = \sum_(m=2)^\infty \frac{(-1)^m}m \sum_(n=1)^\infty \frac1{n^m} \\\\ ~~~~ = \sum_(m=2)^\infty \frac{(-1)^m \zeta(m)}m

so the original sum's value is
\boxed{\gamma\approx0.577216}.

User KrMa
by
3.0k points