Answer: C. (-13, -13)
Explanation:
The midpoint (x,y) of a line segment having two end points (a,b) and (c,d) is given by :-
![x=(a+c)/(2)\ ;\ y=(b+d)/(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/oktp7ujtht0ocdll0fdwpipg59f41q7cs0.png)
Given : The midpoint of a segment is (-6,-5) and one endpoint is (1,3).
Let the coordinates of other end point be (a,b) then , we have
![-6=(a+1)/(2)\ ;\ -5=(b+3)/(2)\\\\\Rightarrow\ a+1=2*-6\ ;\ b+3=2*-5\\\\\Rightharrow\ a+1=-12\ ;\ b+3=-10\\\\\Rightarrow\ a=-12-1\ ;\ b=-10-3\\\\\Rightarrow\ a=-13,\ ;\ b=-13](https://img.qammunity.org/2019/formulas/mathematics/high-school/4ry0mfyz1jvbj788sm65rpwffaibrvry3g.png)
Hence, the coordinates of the other endpoint = (-13,-13)