we are given function as
![f(x)=3x^2-12x+5](https://img.qammunity.org/2019/formulas/mathematics/middle-school/mo1vzh2spimohoq769yzey14lcebdzu0pc.png)
Axis of symmetry:
we can use formula to find axis of symmetry
![f(x)=ax^2+bx+c](https://img.qammunity.org/2019/formulas/mathematics/high-school/v1rne7v6ixq9nfn6kzp942j78qleu9y6is.png)
![x=-(b)/(2a)](https://img.qammunity.org/2019/formulas/mathematics/high-school/1wypt7pn827ztv71lsamfegjpnlf9rrgnz.png)
a=3 , b=-12
![x=-(-12)/(2*3)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/t0nlaa0kcx58wi3ylxxr9qcvm50y66x2m4.png)
now, we can solve for x
![x=2](https://img.qammunity.org/2019/formulas/mathematics/college/j2ylgqzlqmqlm551uh73cj4i3ylurdli25.png)
so, axis of symmetry is
.........Answer
Domain:
we know that
domain is all possible values of x for which any function is defined
since, it is quadratic function
so, it is defined for all real values of x
so, we get
![(-\infty,\infty)](https://img.qammunity.org/2019/formulas/mathematics/high-school/96csiijf3qr1g9hgfr4du0xkwgcvh7gue1.png)
Range:
we know that
range is all possible value of y
we can plug vertex x=2 into f(x) and find y
![f(2)=3(2)^2-12(2)+5](https://img.qammunity.org/2019/formulas/mathematics/middle-school/asxe71jbjahpxw2cy5og4sqx9f0l4dzrgr.png)
![y=-7](https://img.qammunity.org/2019/formulas/mathematics/middle-school/2f7mjpra6zislf87gq1kdr4wjww5tjcov0.png)
Since, we have leading coefficient is 3
so, parabola will be open upward
so, smallest y-value will be -7
so, range will be
![[-7,\infty)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/7co1kz0u10xvy5qng7hq3wggr88096gtqq.png)