169k views
3 votes
What are the solutions of the equation (x+2)^2-2(x+2)-15=0

2 Answers

5 votes

Solve the Equation, with the Quadratic Formula:

( x + 2)^2 - 2( x + 2) - 15 = 0

Solution:

( x + 2)^2 - 2( x + 2) - 15 = 0 ==> x = 3, or x = - 5

Steps:

( x + 2)^2 - 2( x + 2) - 15 = 0

Expand:

( x + 2)^2 - 2( x + 2) - 15: ==> x^2 + 2x - 15

( x + 2)^2 - 2( x + 2) - 15 ==> ( x + 2)^2: ==> x^2 + 4x + 4

Apply Perfect Square Formula: ( a + b )^2 = a^2 + 2ab + b^2

a = x, b = 2 ==> x^2 + 2x * 2 + 2^2

Simplify:

x^2 + 2x * 2 + 2^2: ==> x^2 + 4x + 4

==> x^2 + 2x * 2 + 2^2

Multiply the Numbers:

2 * 2 = 4 ==> x^2 + 4x + 2^2

2^2 = 4 ==> x^2 + 4x + 4

x^2 + 4x + 4 - 2(x + 2) - 15

Expand:

- 2(x + 2): ==> - 2x - 4 - 2(x + 2)

Apply the distributive Law: a( b + c) ==> ab + ac

a = - 2, b = x, c = 2

==> - 2x + ( - 2) * 2

Apply the Plus (+), and Minus ( - ), Rules:

+ ( - a ) ==> - a ==> - 2x - 2 * 2

Multiply the Numbers: 2 * 2 = 4

x^2 + 4x + 4 - 2x - 4 - 15

Simplify: x^2 + 4x + 4 - 2x - 4 - 15: ==> x^2 + 2x - 15

Group Like Terms:

x^2 + 4x + 4 - 2x - 4 - 15

Add Similar Elements: 4x - 2x ==> 2x

x^2 + 4x + 4 - 2x - 4 - 15

Add / Subtract the Numbers: 4 - 4 - 15 ==> - 15

x^2 + 2x - 15 ==> x^2 + 2x - 15 ==> x^2 + 2x - 15 = 0

Solve With Quadratic Formula / Quadratic Equation Formula:

For a Quadratic Equation of the Form: ax^2 + bx + c = 0,

The Solutions are: x^1, 2 = - b sqrt +/- sqrt b^2 - 4ac / 2a

For a = 1, b = 2, c = - 15, x^1, 2 = - 2 sqrt +/- sqrt 2^2 - 4( - 15) / 2 .1

x = - 2 sqrt +/- sqrt 2^2 - 4( - 15) / 2 .1 ==> 3

= - 2 sqrt +/- sqrt 2^2 - 4( - 15) / 2 .1

Apply Rule: - ( - a ) ==> a

= - 2 sqrt +/- sqrt 2^2 - 4( - 15) / 2 .1

sqrt 2^2 + 4 * 1 * 15 = 64

sqrt 2^2 + 4 * 1 * 15

2^2 = 4

sqrt 4 + 4 * 1 * 15

Multiply Numbers: 4 * 1 * 15 = 60

= sqrt 4 + 60

Add Numbers: 4 + 60 = 64

sqrt 64 ==> - 2 + sqrt 64 / 2 * 1

Multiply the Numbers: 2 * 1 = 2

- 2 + sqrt 64 / 2

sqrt 64 = 8

sqrt 64

Factor the Number: 64 = 8^2

==> sqrt 8^2

Apply Radical Rule: n sqrt a^n = a

sqrt 8^2 = 8 ==> 8 ==> - 2 + 8/2

Add / Subtract the Numbers: - 2 + 8 = 6 ==> 6/2

Divid the Numbers: 6/2 = 3 ==> 3

x = - 2 - sqrt 2^2 - 4 * 1 ( - 15) / 2 * 1 ==> - 5

- 2 - sqrt 2^2 - 4 * 1 ( - 15) / 2 * 1

Apply Rule: - ( - a ) = a

- 2 - sqrt 2^2 - 4 * 1 ( - 15) / 2 * 1

sqrt 2^2 + 4 * 1 ( - 15) = sqrt 64

sqrt 2^2 + 4 * 1 ( - 15)

2^2 = 4

sqrt 4 + 4 * 1 * 15

Multiply the Numbers: 4 * 1 * 15 = 60

sqrt 4 + 60

Add the Numbers: 4 + 60 = 64 ==> sqrt 64

= - 2 - sqrt 64 / 2 * 1

Multiply the Numbers: 2 * 1 = 2

= - 2 - sqrt 64 / 2

sqrt 64 = 8 ==> sqrt 64

Factor the Number: 64 = 8^2 ==> sqrt 8^2

Apply Radical Rule: n sqrt a^n = a

sqrt 8^2 = 8 ==> 8 ==> - 2 - 8 / 2

Subtract: - 2 - 8 = - 10 ==> - 10 / 2

Apply the Fraction Rule: - a / b = - a / b ==> - 10 / 2

Divide Numbers: 10 / 2 = 5 ==> - 5

Therefore, The Final Solution / Answers, to your Quadratic Equations to:

(x + 2)^2 - 2(x+2) - 15 =0 ==> x = 3, and x = - 5,

Check the upload for Graph of: ( x + 2)^2 - 2( x + 2) - 15 = 0,

Answers: (x = 3), (x = - 5).

Hope that helps!!!!! : )

What are the solutions of the equation (x+2)^2-2(x+2)-15=0-example-1
User Zeikman
by
8.8k points
7 votes

(x+2)^2-2(x+2)-15=0

x^2 + 4x + 4 -2x -4 - 15 = 0

x^2 + 2x - 15 = 0

(x + 5)(x - 3) = 0

x +5 = 0; x = -5

x - 3 = 0; x = 3

Answer

x = -5 , 3

User Danilinares
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories