189k views
5 votes
Find the inverse function for f(x) = cubic root sqrt x+2

User Boomcubist
by
8.1k points

2 Answers

3 votes


f(x)=\sqrt[3]{x+2}\to y=\sqrt[3]{x+2}

we replace x with y


\sqrt[3]{y+2}=x\ \ \ \ |^3\\\\y+2=x^3\ \ \ \ |-2\\\\y=x^3-2

Answer:
f^(-1)(x)=x^3-2

User Raphael
by
7.8k points
1 vote

we are given


f(x)=\sqrt[3]{x+2}

Firstly , we set f(x)=y


y=\sqrt[3]{x+2}

now, we can switch x and y


x=\sqrt[3]{y+2}

now, we can solve for y


x^3=(\sqrt[3]{y+2})^3


x^3=y+2


y=x^3-2

so, our inverse function is


f^(-1)(x)=x^3-2............Answer

User Salvo
by
8.1k points

No related questions found