170k views
3 votes
Vertex of x^2 + 6x + 17

User Tobiah Rex
by
7.9k points

1 Answer

1 vote

We have:
f(x)=x^2+6x+17

Method 1.

Use:
(*)\ \ \ \ \ (a+b)^2=a^2+2ab+b^2

and the vertex form
f(x)=a(x-h)^2+k

(h, k) - the coordinates of a vertex


x^2+6x+17=x^2+2\cdot x\cdot3+17=\underbrace{x^2+2\cdot x\cdot3+3^2}_((*))-3^2+17\\\\=(x+3)^2+8\to h=-3;\ k=8

Answer: (-3, 8)

Method 2.

For
f(x)=ax^2+bx+c the coordinates of a vertex (h, k) are equal


h=(-b)/(2a);\ k=f(h)=(-(b^2-4ac))/(4a)

We have:
f(x)=x^2+6x+17\to a=1;\ b=6;\ c=17

Substitute:


h=(-6)/(2\cdot1)=(-6)/(2)=-3\\\\k=f(-3)=(-3)^2+6(-3)+17=9-18+17=8

Answer: (-3, 8)

User Dobes
by
7.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories