Answer:
The given table form an exponential function
.
Explanation:
Given : Table
x 0 1 2 3 4
f(x) 10 20 40 80 160
To find : Determine the appropriate model of the function?
Solution :
To determine we find the difference of the given function as
- If the first difference is the same value, the model will be linear.
- If the second difference is the same value, the model will be quadratic.
- If the number of times the difference has been taken before finding repeated values, the model may be exponential or some other special equation.
Now, we find the difference
20-10=10
40-20=20
80-40=40
160-80=80
The difference were not equal so the given function is an exponential function as it satisfy the condition of exponential form.
![y=ab^x](https://img.qammunity.org/2019/formulas/mathematics/college/h6f3tn5p9rzzksznrvdqdhrw613dtzqydg.png)
We find a and b by substituting the value of x and y
When, x=0 and y=10
![10=ab^0](https://img.qammunity.org/2019/formulas/mathematics/college/8uxujxawygaefpg3pxoim917wrl1asztlm.png)
![a=10](https://img.qammunity.org/2019/formulas/mathematics/high-school/tl8go39rhyfwvjq5m6zpacxnty7r28l89t.png)
When, x=1 and y=20
![20=ab^1](https://img.qammunity.org/2019/formulas/mathematics/college/7h1f2tqqglxmw8uyr1rt001skm1h9agsef.png)
![20=10b](https://img.qammunity.org/2019/formulas/mathematics/college/yk1ysdcrxftiwa7vup6036vntztbvpx3v7.png)
![b=2](https://img.qammunity.org/2019/formulas/mathematics/high-school/70hbqcjgqlb08kfoehstm9w6hcqcengzou.png)
So, The exponential form is
![y=10(2)^x](https://img.qammunity.org/2019/formulas/mathematics/college/qbircric33a0f2wmyauvuh04p05yeqh162.png)
Verification
![y=10(2)^3](https://img.qammunity.org/2019/formulas/mathematics/college/ythzp3rcqm53850hjukcegf2g6f94yyjju.png)
![y=10(8)](https://img.qammunity.org/2019/formulas/mathematics/college/z96xw34j1rmj4mzuzmvntg5p6osta61tux.png)
![y=80](https://img.qammunity.org/2019/formulas/mathematics/high-school/1hhoryc9y3rfxo9tomaj2sqc9x9zqhlmr1.png)
So, at x=3 y is 80.
Therefore, The given table form an exponential function
.