69.7k views
2 votes
In the expansion of (3a + 4b)8, which of the following are possible variable terms? Explain your reasoning. a2b3; a5b3; ab8; b8; a4b4; a8; ab7; a6b5

Help please!

User Arka Ghosh
by
7.2k points

1 Answer

2 votes

We have to find the expansion of
(3a+4b)^(8)

We will use binomial expansion to expand the given expression, which states that the expression
(a+b)^(n) is expanded as :


(a+b)^(n)=^(n)C_(0)a^(n)+^(n)C_(1)a^(n-1)b+^(n)C_(2)a^(n-2)b^(2)+........^(n)C_(n)b^(n)

Now expanding
(3a+4b)^(8) we get,


(3a+4b)^(8)=^(8)C_(0)(3a)^(8)+^(8)C_(1)(3a)^(7)(4b)+^(8)C_(2)(3a)^(6)(4b)^(2)+^(8)C_(3)(3a)^(5)(4b)^(3)+^(8)C_(4)(3a)^(4)(4b)^(4)+^(8)C_(5)(3a)^(3)(4b)^(5)+^(8)C_(6)(3a)^(2)(4b)^(6)+^(8)C_(7)(3a)(4b)^(7)+^(8)C_(8)(4b)^(8)


(3a+4b)^(8)=^(8)C_(0)(3)^(8)a^(8)+^(8)C_(1)(3)^(7)(4)(a^(7)b)+^(8)C_(2)(3)^(6)(4)^(2)(a^(6)b^(2))+^(8)C_(3)(3)^(5)(4)^(3)(a^(5)b^(3))+^(8)C_(4)(3)^(4)(4)^(4)(a^(4)b^(4))+^(8)C_(5)(3)^(3)(4)^(5)(a^(3)b^(5))+^(8)C_(6)(3)^(2)(4)^(6)(a^(2)b^(6))+^(8)C_(7)(3)(4)^(7)(ab^(7))+^(8)C_(8)(4)^(8)(b^(8))

So, the variables are
a^(5)b^(3) ,
b^(8) ,
a^(4)b^(4) ,
a^(8) , [tex] ab^(7)

User Javier Cortejoso
by
7.9k points

Related questions