Answer: 57°
Given : In triangle PQR, the side PQ is 17, QR is 15, and PR is 14.
We use law of cosine formula
![QR^2 = PR^2 + PQ^2 - 2* PR * PQ * cos (P)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/4xjnggae26hid9rue74hgbk8vrn83ulc8f.png)
![15^2 = 14^2 + 17^2 - 2*14 * 17 * cos(P)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/f3t9yy04e767qhr07q26vwf7tgp224qjyp.png)
225 = 196 + 289 - 476 cos(P)
225 = 485 - 476 cos (P)
Subtract 485 on both sides
-260 = -476 cos(P)
= cos(P)
P =
![cos^(-1) ((260)/(476))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ylrcrf55ot9uabcj9m0ruwz6gf90w4t2lq.png)
P= 56.89202
So measure of angle P is 57 degrees