Answer:
a)
![(3.00).10^(5)Pa](https://img.qammunity.org/2019/formulas/physics/college/c6ejponflpcmyybmqx707r1cst1tvb89d7.png)
b)
![123.762(m)/(s^(2))](https://img.qammunity.org/2019/formulas/physics/college/3heaia1fwkmhvapf8s50wtf0779tfazjq6.png)
Step-by-step explanation:
Let's start defining the following unit of pressure :
![1Pascal=1Pa=1(N)/(m^(2))](https://img.qammunity.org/2019/formulas/physics/college/bdzkdomtu19ovzxsugswmlf54ircr3zpri.png)
Where N is newton and m is meter.
Within a mass of liquid and defining the surface of the liquid as depth 0.00 m, we can calculate the absolute pressure in any point of the liquid as :
![Pabs=Pgauge+Patm](https://img.qammunity.org/2019/formulas/physics/college/gi1x0wmgfh812huy48rl7xf2r9fb2x1sql.png)
Where Pgauge is the pressure because of the height of liquid over the point.
Where Patm is the atmospheric pressure.
The gauge pressure in a point of a mass of liquid is define as :
Pgauge = δ.g.h
Where δ is the density of the liquid.
Where g is the acceleration due to gravity.
Where h is the height of liquid over the point.
Using the data from the exercise :
![Pabs=Pgauge+Patm](https://img.qammunity.org/2019/formulas/physics/college/gi1x0wmgfh812huy48rl7xf2r9fb2x1sql.png)
At a depth of 2.00 m :
(I)
At a depth of 5.00 m :
(II)
In (II) :
(III)
Putting (III) in (I) :
![(5.00).10^(5)(N)/(m^(2))=808(kg)/(m^(3)).g.(2.00)m+(8.00).10^(5)(N)/(m^(2))-808(kg)/(m^(3)).g.(5.00)m](https://img.qammunity.org/2019/formulas/physics/college/st6bxhtaz64kxs2yweokojpdln192l6k4t.png)
![-(3.00).10^(5)(N)/(m^(2))=1616(kg)/(m^(2)).g-4040(kg)/(m^(2)).g](https://img.qammunity.org/2019/formulas/physics/college/lk3ngzs17m1bqnb76fijrl19sgv6euv7kd.png)
![-(3.00).10^(5)(N)/(m^(2))=-2424(kg)/(m^(2)).g](https://img.qammunity.org/2019/formulas/physics/college/9ycc81my6xshrb5iru5scwvjeaq272wj7m.png)
![g=((3.00).10^(5))/(2424)(N.m^(2))/(m^(2).kg)](https://img.qammunity.org/2019/formulas/physics/college/xkql3hhuxy2zvas7n3nz5p6g2a96ujdby7.png)
![g=123.762(m)/(s^(2))](https://img.qammunity.org/2019/formulas/physics/college/jf60gble740pspgxoxh036wma20ea7f5fc.png)
This is the gravity for point b)
For a) we need to replace this value in another equation. For example in equation (III) :
![(8.00).10^(5)(N)/(m^(2))-808(kg)/(m^(3)).(123.762(m)/(s^(2))).5m=Patm](https://img.qammunity.org/2019/formulas/physics/college/idwh3zc7lazzx6shslerruvuioaslksfsz.png)
![Patm=(3.00).10^(5)(N)/(m^(2))](https://img.qammunity.org/2019/formulas/physics/college/3idnslq9d4pvzkz8wmrlliflk714rwocog.png)
![Patm=(3.00).10^(5)Pa](https://img.qammunity.org/2019/formulas/physics/college/a9yb27viqjw91km4sc5mduatgi10vspedd.png)
And that is the value of atmospheric pressure on planet x.