162k views
3 votes
For what values of $x$ is $$\frac{x^2 + x + 3}{2x^2 + x - 6} \ge 0?$$ note: be thorough and explain why all points in your answer are solutions and why all points outside your answer are not solutions.

User Ethan Long
by
6.2k points

2 Answers

5 votes

Answer:
(-\infty, -2)\cup(3/2,\infty)

Explanation:

Here, the given expression,


(x^2 + x + 3)/(2x^2 + x - 6) \geq 0

Since, for the value of x,

Denominator ≠ 0,


2x^2+x-6\\eq 0


\implies 2x^2+4x - 3x - 6\\eq =0


\implies 2x(x+2)-3(x+2)\\eq 0


\implies (2x-3)(x+2)\\eq 0


\text{ if }2x-3\\eq 0\implies x\\eq (3)/(2)


\text{If } x+2\\eq 0\implies x\\eq -2

Thus, there is three intervals possible,

1)
(-\infty,-2)

2)
(-2,(3)/(2))

3)
((3)/(2),\infty)

In first intervals,
(x^2 + x + 3)/(2x^2 + x - 6) \geq 0 is true.


(-\infty,-2) will contain the value of x.

In second interval,
(x^2 + x + 3)/(2x^2 + x - 6) \geq 0

is not true,


(-2, -(3)/(2)) will not contain the value of x,

In third interval,

In third interval,
(x^2 + x + 3)/(2x^2 + x - 6) \geq 0

is true,


(-2, -(3)/(2)) will contain the value of x,

In third interval,

Thus, the value of x is,


(-\infty, -2)\cup(3/2,\infty)

User Bermjly Team
by
6.7k points
6 votes

To solve the inequality
(x^2+x+3)/(2x^2+x-6)\ge \:0


\mathrm{Factor\:the\:left\:hand\:side\:}(x^2+x+3)/(2x^2+x-6):

The numerator
x^2+x+3 is not factorizable.

so factor the denominator
2x^2+x-6:


2x^2+x-6=\left(2x^2-3x\right)+\left(4x-6\right)=x\left(2x-3\right)+2\left(2x-3\right)\\ \mathrm{Factor\:out\:}x\mathrm{\:from\:}2x^2-3x\mathrm{:\quad }x\left(2x-3\right)\\ \mathrm{Factor\:out\:}2\mathrm{\:from\:}4x-6\mathrm{:\quad }2\left(2x-3\right)\\

Now take
\mathrm{Factor\:out\:common\:term\:}\left(2x-3\right)

Then we get factor of the denominator as
\left(2x-3\right)\left(x+2\right)

Thus
(x^2+x+3)/(2x^2+x-6)=(x^2+x+3)/(\left(x+2\right)\left(2x-3\right))

Now
image

Signs of
x^2+x+3>0


\mathrm{Choosing\:ranges\:that\:satisfy\:the\:required\:condition:}\:\ge \:\:0


x<-2\quad \mathrm{or}\quad \:x>(3)/(2) is the required solution of the given inequality.

For what values of $x$ is $$\frac{x^2 + x + 3}{2x^2 + x - 6} \ge 0?$$ note: be thorough-example-1
User Cheslijones
by
5.5k points