195k views
4 votes
Write the sum using summation notation, assuming the suggested pattern continues.

-8 - 3 + 2 + 7 + ... + 67

User ZigiZ
by
5.9k points

1 Answer

7 votes

the first six terms of the sequence
\bf a_1=-1\qquad a_n=2* a_(n-1)


\bf \begin{array}{ccll}n&term&value\\\text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}&\text{\textemdash\textemdash\textemdash}\\1&a_1&-1\\2&a_2&2* a_(2-1)\\&&2* a_1\\&&-2\\3&a_3&2* a_(3-1)\\&&2* a_2\\&&-4\\4&a_4&2* a_(4-1)\\&&2* a_3\\&&-8\\5&a_5&2* a_(5-1)\\&&2* a_4\\&&-16\\6&a_6&2* a_(-1)\\&&2* a_5\\&&-32\end{array}

now on this new edited version


\bf -8~~,~~\stackrel{-8+5}{-3}~~,~~\stackrel{-3+5}{2}~~,~~\stackrel{2+5}{7}....67

so, as you can see, the "common difference" of this arithmetic sequence is d = 5, hmmm what term is 67 anyway?


\bf n^(th)\textit{ term of an arithmetic sequence}\\\\a_n=a_1+(n-1)d\qquad \begin{cases}n=n^(th)\ term\\a_1=\textit{first term's value}\\d=\textit{common difference}\\a_1=-8\\d=5\\a_n=67\end{cases}\\\\\\67=-8+(n-1)5\implies 67=-8-5+5n\implies 67=-13+5n\\\\\\80=5n\implies \cfrac{80}{5}=n\implies 16=n\qquad ~~~~~~~~~~\boxed{\sum\limits_(i=0)^(15)~-8+5i}

User Francisco Souza
by
6.1k points