cscx/cotx = 1/sin(x) / (cos(x)/sin(x)) = 1*sin(x)/(sin(x)*cos(x))=1/cos(x) = sqrt(2)
Now solve for x
1/cos(x) = sqrt(2)
cos(x) = 1/sqrt(2) = sqrt(2)/2
=> x=2k π ± π /4 (general solution)
Thus for x in the first quadrant, x=45 degrees, and
sin(x)=sqrt(2)/2 = 0.70710678
cos(x)=sqrt(2)/2 = 0.70710678
tan(x) = sin(x)/cos(x) = 1