74.1k views
3 votes
What is the sum of the first five terms of a geometric series with a1= 10 and r= 1/5

1 Answer

0 votes


\bf \qquad \qquad \textit{sum of a finite geometric sequence}\\\\S_n=\sum\limits_(i=1)^(n)\ a_1\cdot r^(i-1)\implies S_n=a_1\left( \cfrac{1-r^n}{1-r} \right)\quad \begin{cases}n=n^(th)\ term\\a_1=\textit{first term's value}\\r=\textit{common ratio}\\----------\\a_1=10\\r=(1)/(5)\\n=5\end{cases}


\bf S_5=10\left( \cfrac{1-\left( (1)/(5) \right)^5}{1-\left( (1)/(5) \right)} \right)\implies S_5=10\left( \cfrac{1-(1^5)/(5^5)}{(4)/(5)}\right)\implies S_5=10\left( \cfrac{(3124)/(3125)}{(4)/(5)} \right)\\\\\\S_5=10\cdot \cfrac{781}{625}\implies S_5=\cfrac{1562}{125}

User Limonka
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories