158k views
3 votes
Find a numerical value of one trigonometric function of x for cscx=sinxtanx+cosx

a.sinx=0
b.cotx=0
c.sinx=1
d.cotx=1

Please Explain How This is Done.

Thanks!

User Mickel
by
6.0k points

2 Answers

4 votes

Answer: d. cotx=1

Step-by-step explanation: cosecx=sinxtanx+cosx

⇒ cosecx= sinx×
(sinx)/(cosx) +cosx

⇒ cosecx=
(sin^(2)x  )/(cosx) +cosx

⇒ cosecx=
(sin^(2)x+cos^(2) x )/(cosx)

⇒ cosecx= 1/cosx (since sin²x+cos²x=1)

⇒ 1/sinx=1/cosx

cosx/sinx=1

⇒ cotx=1

User Tim Down
by
6.8k points
2 votes

cscx = sinx tan x + cos x

Using xsx x = 1/sin x and tan x = sin x/cos x


(1)/(sin x) = sinx *(sinx )/(cos x) + cosx


(1)/(sin x) = (sin^2x +cos^2x)/(cos x)


(1)/(sin x) = (1)/(cos x)

Multiplying both sides by cos x


(cos x)/(sin x) = 1

cot x =1

Correct option is d .

User Grendian
by
6.1k points