Question:
Find the mean and compare it with the median. Find the standard deviation and compare it with the interquartile range. Calculate s for the data 4, 1, 3, 10, 2.
Answer:
(a)
![Mean = 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/qfq7jx0usez6spyvxi07eiwiztsacdwgrc.png)
![Median=3](https://img.qammunity.org/2022/formulas/mathematics/high-school/3o44aa9e8ldfj332gagnozo1ri882fyvi2.png)
![Mean > Median](https://img.qammunity.org/2022/formulas/mathematics/high-school/dsp0mk2xtukmr2ojt7rskm0hl1vhu999od.png)
(b)
![IQR = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ih19hpglnkoeijsfanlea7mazgnelzspk7.png)
![SD = 3.2](https://img.qammunity.org/2022/formulas/mathematics/high-school/r13soetv5qmj6dcq1dirfhc1b76n20nzjx.png)
![SD> IQR](https://img.qammunity.org/2022/formulas/mathematics/high-school/25v3hj9jsk0ivocx0k60bvm9ic05cz69ax.png)
Explanation:
Given:
Data: 4, 1, 3, 10, 2.
Solving (a): The mean and the Median
The mean is calculated as follows:
![Mean = (1)/(n) \sum x](https://img.qammunity.org/2022/formulas/mathematics/high-school/fhhew620ywpkbte6x9nm43gusx0sskamsn.png)
Where
i.e 5 data
So, the expression becomes:
![Mean = (1)/(5)(4 + 1+3+10+2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/96042u4poxywgzc7f4yzto853htclc8qlb.png)
![Mean = (1)/(5)(20)](https://img.qammunity.org/2022/formulas/mathematics/high-school/u5ogsdw9f8lh616esplts3bxk7y8amousm.png)
![Mean = 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/qfq7jx0usez6spyvxi07eiwiztsacdwgrc.png)
Calculating the Median:
First, arrange the order (ascending order):
![Data: 1, 2,3,4,10](https://img.qammunity.org/2022/formulas/mathematics/high-school/7fmj0iqpbxpjckpbnc6lcx2d95sleqjgdx.png)
Because n is odd
The median is represented as:
![Median = ((n+1)/(2))th\ item](https://img.qammunity.org/2022/formulas/mathematics/high-school/kjju9lfryg72fasrymfwrgqyj8uu92pl11.png)
![Median = ((5+1)/(2))th\ item\\](https://img.qammunity.org/2022/formulas/mathematics/high-school/qkcn5lho2jdtti0asbn84jiz5jtg56taxt.png)
![Median = ((6)/(2))th\ item](https://img.qammunity.org/2022/formulas/mathematics/high-school/d59pwctj15dtcr1787kdhogss1iq52s1ng.png)
![Median = 3rd\ item](https://img.qammunity.org/2022/formulas/mathematics/high-school/1aldk6c329spdr14ww1w9d6lkxdaoqf27h.png)
From the arranged data, the 3rd item is 3.
Hence:
![Median=3](https://img.qammunity.org/2022/formulas/mathematics/high-school/3o44aa9e8ldfj332gagnozo1ri882fyvi2.png)
By comparison, the mean is greater than the median because
![4 > 3](https://img.qammunity.org/2022/formulas/mathematics/high-school/w8m30d4tvzqowgqf8uj791rr55z9588gbf.png)
Solving (b): Standard Deviation and IQR
The standard deviation is calculated as follows:
![SD= \sqrt{(\sum (x_i - Mean)^2)/(n)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4odletq5s4y6u3wq7tsb3nkzg78sluarf3.png)
So, we have:
![SD= \sqrt{((4 - 4)^2+(1 - 4)^2+(3 - 4)^2+(10 - 4)^2+(2 - 4)^2)/(5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/p1ut0yivlscxvvcrx0o0tqvz67tqlw5w9l.png)
![SD= \sqrt{((0)^2+(- 3)^2+(- 1)^2+(6)^2+(-2)^2)/(5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/b4wpi4jklp0gmrvob9e1milawy55ajvlx6.png)
![SD= \sqrt{(0+9+1+36+4)/(5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/rufurnqz9i56ox2jjl6pj1maxjjuew4wn2.png)
![SD= \sqrt{(50)/(5)](https://img.qammunity.org/2022/formulas/mathematics/high-school/xes5o77mfvdr4f2ivkd7ia6uy0hqhjx6rz.png)
![SD= √(10)](https://img.qammunity.org/2022/formulas/mathematics/high-school/e34hk6nese3kdz97vkvc6i8upt1km9j2vh.png)
![SD = 3.2](https://img.qammunity.org/2022/formulas/mathematics/high-school/r13soetv5qmj6dcq1dirfhc1b76n20nzjx.png)
Calculating IQR
![IQR = Q_3 - Q_1](https://img.qammunity.org/2022/formulas/mathematics/high-school/ed2urf9nlenazx19c00j0sknnlx06ldtib.png)
![Data: 1, 2,3,4,10](https://img.qammunity.org/2022/formulas/mathematics/high-school/7fmj0iqpbxpjckpbnc6lcx2d95sleqjgdx.png)
In (a), we calculate the median as:
![Median=3](https://img.qammunity.org/2022/formulas/mathematics/high-school/3o44aa9e8ldfj332gagnozo1ri882fyvi2.png)
First, we calculate
![Q_1](https://img.qammunity.org/2022/formulas/mathematics/high-school/6co4xj75ts9ay1zf4kqqq6zwituerps3y9.png)
![Q_1 = Median\ of\ the\ first\ half.](https://img.qammunity.org/2022/formulas/mathematics/high-school/oo8o1q9m91arr0ynpeyy4sbt3qejl7vury.png)
The first half is:
![First\ Half = 1,2,3](https://img.qammunity.org/2022/formulas/mathematics/high-school/laxrnf5wa5l1x3a7iykyhkrmiz7aohgtr4.png)
So:
![Q_1 = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/tli7c4rr712yor77rzmpoqwser9o108w2m.png)
First, we calculate
![Q_3](https://img.qammunity.org/2022/formulas/mathematics/high-school/1qhcxx32ntn2tpei2rrfu84ctbbkjk875r.png)
![Q_3 = Median\ of\ the\ second\ half.](https://img.qammunity.org/2022/formulas/mathematics/high-school/96lgqccho5ann2t2zs53v8vov6e1fhlrjp.png)
![Second\ Half = 3,4,10](https://img.qammunity.org/2022/formulas/mathematics/high-school/3pjmy3uah014urlm2ub440uoe07su3cv8o.png)
So:
![Q_3 = 4](https://img.qammunity.org/2022/formulas/mathematics/high-school/r2l2u30ue4puwfhkw3jz118fb07tr0axj6.png)
Recall that:
![IQR = Q_3 - Q_1](https://img.qammunity.org/2022/formulas/mathematics/high-school/ed2urf9nlenazx19c00j0sknnlx06ldtib.png)
![IQR = 4 - 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/jf7kwkabidnpn7ezeis068xfvjabs01zw1.png)
![IQR = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ih19hpglnkoeijsfanlea7mazgnelzspk7.png)
So, we have:
![IQR = 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/ih19hpglnkoeijsfanlea7mazgnelzspk7.png)
![SD = 3.2](https://img.qammunity.org/2022/formulas/mathematics/high-school/r13soetv5qmj6dcq1dirfhc1b76n20nzjx.png)
By comparison, the standard deviation is greater than the IQR because:
![3.2 > 2](https://img.qammunity.org/2022/formulas/mathematics/high-school/rdiv9l4xr8jrnokrqtwz7x9fd1uhx4nmpn.png)
So,
![SD> IQR](https://img.qammunity.org/2022/formulas/mathematics/high-school/25v3hj9jsk0ivocx0k60bvm9ic05cz69ax.png)