General Idea:
If we have a quadratic function of the form f(x)=ax^{2} +bx+c , then the function will attain its maximum value only if a < 0 & its maximum value will be at x=-\frac{b}{2a} .
Applying the concept:
The height h is modeled by h = −16t^2 + vt + c, where v is the initial velocity, and c is the beginning height of the firecracker above the ground. The firecracker is placed on the roof of a building of height 15 feet and is fired at an initial velocity of 100 feet per second. Substituting 15 for c and 100 for v, we get the function as
.
Comparing the function f(x)=ax^{2} +bx+c with the given function
, we get
,
and
.
The maximum height of the soccer ball will occur at t=\frac{-b}{2a}=\frac{-100}{2(-16)} = \frac{-100}{-32}=3.125 seconds
The maximum height is found by substituting
in the function as below:
![h=-16(3.125)^2+100(3.125)+15=171.25 feet](https://img.qammunity.org/2019/formulas/mathematics/high-school/wc3rhd7psubtf60yve4v4r7aao2wjsd73s.png)
Conclusion:
Yes ! The firecracker reaches a height of 100 feet before it bursts.