174k views
5 votes
Let f(x) = 2x2 + x − 3 and g(x) = x − 1.

Find f(x)/g(x) and state its domain

2 Answers

6 votes

We have 2x^2 + x - 3 = 2x^2 - 2x + 3x - 3 = 2x ( x - 1 ) - 3( x - 1 ) = ( x - 1 )( 2x - 3 );

But g(x) is not 0; then, x is not 1;

The domain is R - {1} ;

f(x) / g(x) = ( x - 1 )( 2x - 3 ) / (x - 1 ) = 2x - 3;

User Ralixyle
by
9.7k points
2 votes

Answer:

The domain of
(f(x))/(g(x)) is
-\infty \:<x<\infty \:

Explanation:

We need to find the domain of
(f(x))/(g(x))

The given functions are:
f(x)=2x^(2)+x-3 and
g(x)=x-1

First, we factorize the f(x);


f(x)=2x^(2)+x-3


f(x)=2x^(2) - 2x +3x -3


f(x)=2x(x- 1) +3(x -1)


f(x)=(2x +3)(x- 1)

Now, divide f(x) by g(x),


(f(x))/(g(x))


(f(x))/(g(x))=((2x +3)(x- 1))/((x- 1))

simplify,


(f(x))/(g(x))=(2x +3)


\mathrm{Domain\:definition}


\mathrm{The\:domain\:of\:a\:function\:is\:the\:set\:of\:input\:or\:argument\:values\:for\:which\:the\:function\:is\:real\:and\:defined}


\mathrm{The\:function\:has\:no\:undefined\:points\:nor\:domain\:constraints.\:\:Therefore,\:\:the\:domain\:is}


-\infty \:<x<\infty \:

Therefore, the domain of
(f(x))/(g(x)) is
-\infty \:<x<\infty \:

User Yajneshwar Mandal
by
7.9k points