So with similar figures, the corresponding sides will all be proportional. But before I can use ratios, I have to use the distance formula,
on BC and IJ.
B = (-3,0)
C = (-1,1)
![√((-1-(-3))^2+(1-0)^2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/jc3xpc1b499lrpyepsfdly8t2v1ohg2hj0.png)
Firstly, solve the parentheses:
![√((2)^2+(1)^2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/n5fx25foh7dkwipa1d6zm9pry6cbyvmsz1.png)
Next, solve the exponents:
![√(4+1)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/wg8yogwlo59ags7zgaw2janubes0fitu9w.png)
Next, solve the addition, and your answer will be √5.
(The process with IJ will be similar, so I'll just go through it real quickly.)
I = (5,0)
J = (6,1)
![√((6-5)^2+(1-0)^2)\\ √((1)^2+(1)^2)\\ √(1+1)\\ √(2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/9v3v3yzjnj20l2i53rwxa7dvam4b9hp8zd.png)
Now we can do the ratios:
![(BC)/(IJ) =(CD)/(JK) =(DE)/(KL) =(EF)/(LM) =(FG)/(MN) =(GA)/(NH) =(AB)/(HI)\\ (√(5))/(√(2))=(4)/(2) =(2)/(1) =(2)/(1) =(1)/(1) =(4)/(2) =(2)/(1)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/o3cgcif33xazhq009wwr7eqy60piwfb0ov.png)
From the ratios above, we can see that the sides are all not proportionally the same, therefore these figures are not similar.