The amount of material removed is the volume of the region within the sphere bounded by the cylinder. Consider a sphere of radius
centered at the origin; this sphere has equation
![x^2+y^2+z^2=4a^2\iff z^2=4a^2-x^2-y^2](https://img.qammunity.org/2019/formulas/mathematics/college/z6uuhm7swv6hwrnofdwqjxhztytned7z94.png)
The given cylinder has equation
![x^2+y^2=a^2](https://img.qammunity.org/2019/formulas/mathematics/college/l9khwygr9ud1kz0f28q17s52e8on54zims.png)
The volume of the region of interest
is given by
![\displaystyle\iiint_(\mathcal D)\mathrm dV](https://img.qammunity.org/2019/formulas/mathematics/college/lrw1wcglpp2uobxqhni7t4zy74eesibsj5.png)
Converting to cylindrical coordinates, setting
![x=r\cos\theta](https://img.qammunity.org/2019/formulas/mathematics/college/oag8cs9tpccdmm2pjhi6t3c2zkjvnqqtp8.png)
![y=r\sin\theta](https://img.qammunity.org/2019/formulas/mathematics/college/z68knjn0qhkkc6bb29jye55z416kw11ze5.png)
![z=\zeta](https://img.qammunity.org/2019/formulas/mathematics/college/k8qb97hgxiah7pu6bhxm2ar6cwhxo4e3fa.png)
we have
![z^2=4a^2-r^2](https://img.qammunity.org/2019/formulas/mathematics/college/t19pcbi5ua9qqf1c3vrttat5vksp92074b.png)
and
![\mathrm dV=\mathrm dx\,\mathrm dy\,\mathrm dz=\left|(\partial(x,y,z))/(\partial(r,\theta,\zeta))\right|\,\mathrm dr\,\mathrm d\theta\,\mathrm d\zeta](https://img.qammunity.org/2019/formulas/mathematics/college/dzp303gw4ufii2d3h0xoj5drjjhg7h3w03.png)
![\implies\mathrm dV=r\,\mathrm dr\,\mathrm d\theta\,\mathrm d\zeta](https://img.qammunity.org/2019/formulas/mathematics/college/87r6p70gloo2blgvmwmbauu1gfdypdbwsr.png)
where
is the Jacobian of the transformation from
to
. The region
is described by the set
![\left\{(r,\theta,\zeta)\,:\,0\le r\le a\land0\le\theta\le2\pi\land-√(4a^2-r^2)\le\zeta\le√(4a^2-r^2)\right\}](https://img.qammunity.org/2019/formulas/mathematics/college/soh8yjioblapirmve2crt2x9w100348p4o.png)
The integral is then
![\displaystyle\iiint_(\mathcal D)\mathrm dV=\int_(\theta=0)^(\theta=2\pi)\int_(r=0)^(r=a)\int_(\zeta=-√(4a^2-r^2))^(\zeta=√(4a^2-r^2))r\,\mathrm d\zeta\,\mathrm dr\,\mathrm d\theta](https://img.qammunity.org/2019/formulas/mathematics/college/o2xevnn7jst933mrqk9cj7mcff7tv0v5yk.png)
The integral with respect to
is symmetric about
, so we instead compute twice the integral from
to
, and we can immediately compute the integral with respect to
:
![=\displaystyle4\pi\int_(r=0)^(r=a)r√(4a^2-r^2)\,\mathrm dr](https://img.qammunity.org/2019/formulas/mathematics/college/oqfyvv42hkn86p2l6s1jrstmlf819mrqm6.png)
Now, let
, so that
:
![=\displaystyle-2\pi\int_(r=0)^(r=a)-2r√(4a^2-r^2)\,\mathrm dr=-2\pi\int_(s=4a^2)^(s=3a^2)\sqrt s\,\mathrm ds](https://img.qammunity.org/2019/formulas/mathematics/college/mb6slfn282uf5fesn8bjxqns1fx96kiq27.png)
![=-2\pi\cdot\frac23s^(3/2)\bigg|_(s=4a^2)^(s=3a^2)](https://img.qammunity.org/2019/formulas/mathematics/college/9tfcee5387dzej6j4ihf0fmxv8tkqdnohe.png)
![=\frac{4\pi}3\left((4a^2)^(3/2)-(3a^2)^(3/2)\right)](https://img.qammunity.org/2019/formulas/mathematics/college/ugpt31y0cvvfou5bf3pxdxodgyfsln6cal.png)
![=\frac{4\pi(8-3^(3/2))a^3}3](https://img.qammunity.org/2019/formulas/mathematics/college/4qnmzwaypx32lxmy9693tqiv1ovps6m623.png)