Serious stuff for July.
1. Sum of n even squares.
This is related to the sum of the squares of the integers. Lots of different proofs; how about we start from the difference of consecutive cubes.
![\displaystyle S = \sum_(k=1)^n ((k+1)^3 - k^3)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/wx2veay5lpxnilmfqdfpy1tv4pzvoa5egs.png)
![\displaystyle S = \sum_(k=1)^n (3k^2 + 3k + 1)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/cirnlorxrvacpsn3c91kfo8v7ct4tr486s.png)
![\displaystyle S = 3 \sum k^2 + 3 \sum k + \sum 1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/w9ln1dlf4ojyfov2djlykuorzcwlws7sn9.png)
![\displaystyle S = 3 \sum k^2 + 3n(n+1)/2 + n](https://img.qammunity.org/2019/formulas/mathematics/middle-school/icoyx8413b1bll4h558vl1gme79qgsr6yt.png)
![\displaystyle \sum k^2 = \frac 1 3(S - (3/2) n(n+1) - n)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/urzk5nsjpsbc9dqcvboh1hr4tw3x7wcvk1.png)
So all we need is S which is nicely telescoping:
![S = (2^3 - 1^3) + (3^2 - 2^3) + (4^3 - 3^3) + ... + (n+1)^3-n^3](https://img.qammunity.org/2019/formulas/mathematics/middle-school/nehumm4j4q3l7m8qi34at6osggwu73k2k6.png)
![S = (n+1)^3 - 1](https://img.qammunity.org/2019/formulas/mathematics/middle-school/6nxq5m50tx5nor99odzg5i5mymstib1qp3.png)
![\displaystyle \sum k^2 = \frac 1 3((n+1)^3 - 1 - (3/2) n(n+1) - n)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/jd3rtevh7wl9svbw1evwwnidl7th1k7zpa.png)
![\displaystyle \sum k^2 = \frac 1 6 n (n + 1) (2 n + 1)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/jatontxn13tg7y6kxdrurju3rb0n076gf8.png)
We're interested in
![\displaystyle \sum (2k)^2 = 4 \sum k^2 = \frac 2 3 n (n + 1) (2 n + 1) \quad\checkmark](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ymnuwvxelxyh5umxvh32s4hp9g8a48z6as.png)
That's just the first one. This is gonna be a long problem set.
2.
![\displaystyle S = \sum_(j=1)^n (3j - 2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/hxjd4e6txc3flcmur6oqvq1yuw51td1psq.png)
That's a lot easier.
![\displaystyle S = 3 \sum j - \sum 2](https://img.qammunity.org/2019/formulas/mathematics/middle-school/co4i941bmqwwl0ahn4rjenmedqttkzcdo5.png)
![S = 3n(n+1)/2 - 2n](https://img.qammunity.org/2019/formulas/mathematics/middle-school/d700nztftmk294s6oizli7bf81n7zdur73.png)
![S = 3n(n+1)/2 - 2n](https://img.qammunity.org/2019/formulas/mathematics/middle-school/d700nztftmk294s6oizli7bf81n7zdur73.png)
![S = \frac 1 2 (3n^2 -n) \quad\checkmark](https://img.qammunity.org/2019/formulas/mathematics/middle-school/8jp5fns8scxy6vavh0vds3ts30wskvt6z6.png)
3.
![\displaystyle \sum_(k=1)^n (5k-1) = 5 \sum k - \sum 1 = \frac 5 2 n(n+1)-n = \frac n 2(5n+3) \quad\checkmark](https://img.qammunity.org/2019/formulas/mathematics/middle-school/sue6lav2vf2nktfps34a9hl596rsyfvxbc.png)
4.
Now it's getting interesting again.
![\displaystyle S=\sum_(p=1)^n p(2^(p-1))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/k5m00511ma890m6o2uqm98botxpy9zlpwr.png)
If I recall, the trick with these is turning them into double sums. Instead of multiplying by p, we'll add up p times.
![\displaystyle S=\sum_(p=1)^n \sum_(q=1)^p 2^(p-1)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/oiwl9hmt7rtuqmhk1u9x904ora1ag6nxsg.png)
Let's just look at this for a minute as
![\displaystyle S=\sum_(p=1)^n \sum_(q=1)^p f(p) = f(1) + f(2)+f(2) + f(3)+f(3)+f(3)+...](https://img.qammunity.org/2019/formulas/mathematics/middle-school/qtbemf0hkzsimtvww74ltjekop3ah25jxm.png)
This is the tricky part; we want to exchange the order of the sums but we have the outer index p in the inner bound. When q is the outer sum it can't go to p so it must go to n:
![\displaystyle S=\sum_(q=1)^n \sum_(p=?)^? f(p)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/32zfx1ko2c1mffj5v424rgb26wb059l7ah.png)
We have to fill in the question marks. We need
so we can see the bounds are:
![\displaystyle S=\sum_(q=1)^n \sum_(p=q)^n f(p)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/9qcb0sacuvs328co86qvr5ejrbd4mvn4cr.png)
We can write the sum as the difference of two sums from 1.
![\displaystyle S= \sum_(q=1)^n \left(\sum_(p=1)^n f(p) - \sum_(p=1)^(q-1) f(p) \right)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3vwmvhv9hg8honxtkcxp82ap7s2symuaz6.png)
OK we substitute back in for f.
![\displaystyle S=\sum_(q=1)^n \left( \sum_(p=1)^n 2^(p-1) - \sum_(p=1)^(q-1) 2^(p-1) \right)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/4q5su3gewc1alsgnup4h6pwtcf19pk15ve.png)
That's two geometric series
![\displaystyle S=\sum_(q=1)^n ( (1-2^n)/(1-2) - (1-2^(q-1))/(1-2) )](https://img.qammunity.org/2019/formulas/mathematics/middle-school/6gv5h3v2iyqbd2h8m5ts4a3p64lampm5kd.png)
![\displaystyle S=\sum_(q=1)^n ( 2^n - 2^(q-1))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/87d1ul95n4vl8oqzwkbqnakixpyq9r53e3.png)
![\displaystyle S=\sum_(q=1)^n 2^n - \sum_(q=1)^n 2^(q-1)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/29jt1dae4axqol9kc3ikavplnw2azp3mi2.png)
![\displaystyle S=n 2 ^n - (1-2^n)/(1-2)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/k9jjczq3xd18weylzr5ts9xrt4o37nu8i9.png)
![\displaystyle S = (n-1)2^n + 1 \quad\checkmark](https://img.qammunity.org/2019/formulas/mathematics/middle-school/ag852ozrmq4nzygtr1mdnsuqymr28uxul8.png)
5.
![\displaystyle S = \sum_(k=1)^n (1)/(k^2 + k)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/xmwraermawda5hpddc7ds3zg5nsibxnyds.png)
Hmmm. Looks complicated but is that just a telescoper?
![\displaystyle S = \sum_(k=1)^n (1)/(k(k+1))](https://img.qammunity.org/2019/formulas/mathematics/middle-school/qxkzz46u6209avyyiqt800tcy467f1xgll.png)
It's not too hard to just guess the partial fractions:
![\displaystyle S = \sum_(k=1)^n \left((1)/(k) - (1)/(k+1)\right)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/wj6wh4e31bmnzj73jjjgi32wrwrvvz24wc.png)
![\displaystyle S = (1)/(1) - (1)/(2) + (1)/(2) - (1)/(3) + ... + (1)/(n) - (1)/(n+1)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/hheaclirq1pzcdypz14pimka05280pkwjx.png)
![\displaystyle S = 1 - (1)/(n+1)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/457bucfd5mpkmn2kq7ydv9fi3hzhe27z6a.png)
![\displaystyle S = (n)/(n+1) \quad\checkmark](https://img.qammunity.org/2019/formulas/mathematics/middle-school/993nbazcjhijggphylwhkx9rjibtly4h1r.png)
Phew. Tough problem set. It occurs to me now we could have done the hard ones by induction which probably would have been simpler.