The correct ratios are: cse 27=23/RT, sec 27= 23/10.4 and cot 63 = RT/10.4
In triangle RST, angle T= 90° and angle R= 63°
As the total of all angle in any triangle is 180°, so the measure of the angle S = 180°- (90°+63°)
S= 180°- 153°
S= 27°
According to the rule of trigonometric ratios,
cse(θ) =
![(hypotenuse)/(opposite)](https://img.qammunity.org/2019/formulas/mathematics/high-school/4lsurto6b1s4f52sfalx4zkgm416wodyin.png)
sec(θ) =
![(hypotenuse)/(adjacent )](https://img.qammunity.org/2019/formulas/mathematics/high-school/z3nad900mxvw12zhje68bklsp2stcfqulz.png)
cot(θ) =
![(adjacent)/(opposite)](https://img.qammunity.org/2019/formulas/mathematics/high-school/tzyg7bdh5xqljbtq7vix9c3juhruto7blt.png)
In respect of angle R (63°), side RS(23) is hypotenuse , ST(10.4) is opposite and RT is adjacent.
So, cse(63°) =
![(23)/(10.4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/lv264mgx8gvgl79rnjo03qeobcol3umfhx.png)
sec(63°) =
![(23)/(RT)](https://img.qammunity.org/2019/formulas/mathematics/high-school/pvm0vk5p5c63o5oj4nkscauoyyd29nkli4.png)
cot(63°) =
![(RT)/(10.4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ym0kyjf9oi0z9utranke2bol9lhdb3li7v.png)
Now, in respect of angle S(27°), hypotenuse is RS(23), adjacent is ST(10.4) and opposite is RT.
So, cse(27°) =
![(23)/(RT)](https://img.qammunity.org/2019/formulas/mathematics/high-school/pvm0vk5p5c63o5oj4nkscauoyyd29nkli4.png)
sec(27°) =
![(23)/(10.4)](https://img.qammunity.org/2019/formulas/mathematics/high-school/lv264mgx8gvgl79rnjo03qeobcol3umfhx.png)
cot(27°) =
![(10.4)/(RT)](https://img.qammunity.org/2019/formulas/mathematics/high-school/vwges8ilv1q2fqndlw6hrjdz9w5mk1wd11.png)