105k views
4 votes
Consider the matrix

a. a = 4 0 0 1 3 0 −4 5 −1 find the characteristic polynomial for the matrix
a. (write your answer in terms of λ.)

User LindseyD
by
6.6k points

1 Answer

4 votes


\mathbf A=\begin{bmatrix}4&0&0\\1&3&0\\-4&5&-1\end{bmatrix}


The characteristic polynomial is given by
\det(\mathbf A-\lambda\mathbf I):



\mathbf A-\lambda\mathbf I=\begin{bmatrix}4-\lambda&0&0\\1&3-\lambda&0\\-4&5&-1-\lambda\end{bmatrix}


Compute the determinant by Laplace expansion along the first row:



\det(\mathbf A-\lambda\mathbf I)=(4-\lambda)\begin{vmatrix}3-\lambda&0\\5&-1-\lambda\end{vmatrix}=(4-\lambda)(3-\lambda)(-1-\lambda)



\implies\det(\mathbf A-\lambda\mathbf I)=-\lambda^3+6\lambda^2-5\lambda-12

User Bo
by
6.5k points