105k views
4 votes
Consider the matrix

a. a = 4 0 0 1 3 0 −4 5 −1 find the characteristic polynomial for the matrix
a. (write your answer in terms of λ.)

User LindseyD
by
8.6k points

1 Answer

4 votes


\mathbf A=\begin{bmatrix}4&0&0\\1&3&0\\-4&5&-1\end{bmatrix}


The characteristic polynomial is given by
\det(\mathbf A-\lambda\mathbf I):



\mathbf A-\lambda\mathbf I=\begin{bmatrix}4-\lambda&0&0\\1&3-\lambda&0\\-4&5&-1-\lambda\end{bmatrix}


Compute the determinant by Laplace expansion along the first row:



\det(\mathbf A-\lambda\mathbf I)=(4-\lambda)\begin{vmatrix}3-\lambda&0\\5&-1-\lambda\end{vmatrix}=(4-\lambda)(3-\lambda)(-1-\lambda)



\implies\det(\mathbf A-\lambda\mathbf I)=-\lambda^3+6\lambda^2-5\lambda-12

User Bo
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories