For this case we have the following expression:
![2(\sqrt[4]{16x})-2(\sqrt[4]{2y})+3(\sqrt[4]{81x})-4(\sqrt[4]{32y})](https://img.qammunity.org/2019/formulas/mathematics/middle-school/6mgp4eagpvvfs5a6pdwwo8473vrv4ujojc.png)
Rewriting the numbers within the roots we have:
![2(\sqrt[4]{2*2*2*2x})-2(\sqrt[4]{2y})+3(\sqrt[4]{3*3*3*3x})-4(\sqrt[4]{2*2*2*2*2y})](https://img.qammunity.org/2019/formulas/mathematics/middle-school/3ec7cp8pg8iabi5pykak9ry0o61g0cqykh.png)
Then, by properties of powers we have:
![2(\sqrt[4]{2^4x})-2(\sqrt[4]{2y})+3(\sqrt[4]{3^4x})-4(\sqrt[4]{2^42y})](https://img.qammunity.org/2019/formulas/mathematics/middle-school/mcsakyyjny48hclwewaqeh6p8o3q4wmliu.png)
Then, by radical properties we have:
![2(2\sqrt[4]{x})-2(\sqrt[4]{2y})+3(3\sqrt[4]{x})-4(2\sqrt[4]{2y})](https://img.qammunity.org/2019/formulas/mathematics/middle-school/s76gtecke84trilkkij5l9g7oxg0xvyzbm.png)
Rewriting the expression we have:
![4\sqrt[4]{x}-2\sqrt[4]{2y}+9\sqrt[4]{x}-8\sqrt[4]{2y}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/d3tnih09s6chk0ymivqc9gtq6o1t2es1os.png)
Finally, adding similar terms we have:
![(4+9)\sqrt[4]{x}-(2+8)\sqrt[4]{2y}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/57stpmz42ce23tigpmvrfo3c0h83exhmfs.png)
![13\sqrt[4]{x}-10\sqrt[4]{2y}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/lk2jiui3ea54qq3nfblxk23b78w98pl94j.png)
Answer:
The simplified form of the expression is:
![13\sqrt[4]{x}-10\sqrt[4]{2y}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/lk2jiui3ea54qq3nfblxk23b78w98pl94j.png)