215k views
5 votes
what is the simplified form of the following expression? Assume X 0 and y 0. 2(^4 sqrt 16 x) -2(^4 sqrt 2y )+3 (^4 sqrt 81x ) -4 ( ^4 sqrt 32y)

2 Answers

4 votes

Answer is C

Just took the test.

User Jakub Kutrzeba
by
8.2k points
3 votes

For this case we have the following expression:


2(\sqrt[4]{16x})-2(\sqrt[4]{2y})+3(\sqrt[4]{81x})-4(\sqrt[4]{32y})

Rewriting the numbers within the roots we have:


2(\sqrt[4]{2*2*2*2x})-2(\sqrt[4]{2y})+3(\sqrt[4]{3*3*3*3x})-4(\sqrt[4]{2*2*2*2*2y})

Then, by properties of powers we have:


2(\sqrt[4]{2^4x})-2(\sqrt[4]{2y})+3(\sqrt[4]{3^4x})-4(\sqrt[4]{2^42y})

Then, by radical properties we have:


2(2\sqrt[4]{x})-2(\sqrt[4]{2y})+3(3\sqrt[4]{x})-4(2\sqrt[4]{2y})

Rewriting the expression we have:


4\sqrt[4]{x}-2\sqrt[4]{2y}+9\sqrt[4]{x}-8\sqrt[4]{2y}

Finally, adding similar terms we have:


(4+9)\sqrt[4]{x}-(2+8)\sqrt[4]{2y}


13\sqrt[4]{x}-10\sqrt[4]{2y}

Answer:

The simplified form of the expression is:


13\sqrt[4]{x}-10\sqrt[4]{2y}

User SoField
by
8.0k points