17.2k views
1 vote
Rationalize the numerator.

\frac{ \sqrt[3]{144x } }{ \sqrt[3]{y} }

User Lithis
by
5.8k points

2 Answers

1 vote

∛144x

-----------

∛y


∛8 ∛18x ∛y^2

= -------------- * ----------------

∛y ∛y^2


2 ∛18xy^2

= ------------------

∛y^3


2 ∛18xy^2

= ------------------

y

User Bart Haalstra
by
6.1k points
0 votes

rationalizing the numerator, or namely, "getting rid of that pesky radical at the top".


we simply multiply top and bottom by a value that will take out the radicand in the numerator.



\bf \cfrac{\sqrt[3]{144x}}{\sqrt[3]{y}}~~ \begin{cases} 144=2\cdot 2\cdot 2\cdot 2\cdot 3\cdot 3\\ \qquad 2^3\cdot 18 \end{cases}\implies \cfrac{\sqrt[3]{2^3\cdot 18x}}{\sqrt[3]{y}}\implies \cfrac{2\sqrt[3]{ 18x}}{\sqrt[3]{y}} \\\\\\ \cfrac{2\sqrt[3]{ 18x}}{\sqrt[3]{y}}\cdot \cfrac{\sqrt[3]{(18x)^2}}{\sqrt[3]{(18x)^2}}\implies \cfrac{2\sqrt[3]{(18x)(18x)^2}}{\sqrt[3]{(y)(18x)^2}}\implies \cfrac{2\sqrt[3]{(18x)^3}}{\sqrt[3]{18^2x^2y}}



\bf \cfrac{2(18x)}{\sqrt[3]{324x^2y}}~~ \begin{cases} 324=2\cdot 2\cdot 3\cdot 3\cdot 3\cdot 3\\ \qquad 12\cdot 3^3 \end{cases}\implies \cfrac{36x}{\sqrt[3]{12\cdot 3^3x^2y}} \\\\\\ \cfrac{36x}{3\sqrt[3]{12x^2y}}\implies \cfrac{12x}{\sqrt[3]{12x^2y}}

User Daman
by
5.7k points