168k views
3 votes
PLEASE HELP

I posted the question below. Also I writing this part so it can exceed 20 characters xD

PLEASE HELP I posted the question below. Also I writing this part so it can exceed-example-1

1 Answer

3 votes

Hello!


So, this is quite the complex question, and here are the following steps:


What is the quotient of
\frac{6-3\sqrt[3]{6}}{\sqrt[3]{9}}?


\frac{(6 - 3\sqrt[3]{6})\sqrt[3]{9^(2)}}{9} (rationalize the denominator)


\frac{3(2 -\sqrt[3]{6})\sqrt[3]{9^(2)}}{9} (factor 3 from the expression)


\frac{(2-\sqrt[3]{6})\sqrt[3]{9^(2)}}{3} (reduce the fraction with 3)


\frac{2\sqrt[3]{9^(2)}-\sqrt[3]{9^(2)}}{3} (distributive property)


\frac{2\sqrt[3]{81}-\sqrt[3]{486}}{3} (simplify 3 · 9²)


\frac{6\sqrt[3]{3}-3\sqrt[3]{18}}{3} (simplify the radical)


\frac{3(2\sqrt[3]{3}-3\sqrt[3]{18})}{3} (factor 3 from the expression)


2\sqrt[3]{3}-\sqrt[3]{18} (reduce the fraction)


The answer, is simply, choice A,
2\sqrt[3]{3} -\sqrt[3]{18} ≈ 0.263758.

User GracelessROB
by
7.7k points

No related questions found