Answer: B.
![79^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/6gtd5m8wj8odd7bu3m1e8z3iyuw71dmzta.png)
Explanation:
In the given picture, we have a circle with the measure of arc RT=
![158^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/9sx0mqlwjcnmn6kdp4lrwqb3wmtft5wtjr.png)
Let the center of the given circle be O.
Since, the angle subtended by an arc at the center =measure of arc
Therefore, the angle subtended by an arc RT at the center =
![\angle{ROT}=158^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/9usxzj8fwfxc8osx1bxm6dknis1e6hexeh.png)
Also, the angle which is subtended by an arc at the center of a circle is double the size of the angle subtended at any point on the circumference.
i.e.
![\angle{ROT}=2\angle{RST}](https://img.qammunity.org/2019/formulas/mathematics/middle-school/qp9iyb4bay49451d0f755b6l47nqcmq15x.png)
Thus, the measure of
![\angle{RST}=\frac{\angle{ROT}}{2}=(158^(\circ))/(2)=79^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/qoi3u9vmvobsbfh2z766e41uwxo5szzxrc.png)
Hence, the measure of
![\angle{RST}=79^(\circ)](https://img.qammunity.org/2019/formulas/mathematics/middle-school/o3gdu3emsstkou3scwlvnxuffg9nyoi0q1.png)