166k views
4 votes
Which two values of x are roots of the polynomial below? 3x2 - 3x + 1

User Brendan L
by
7.7k points

2 Answers

1 vote

The roots of a polynomial are where the polynomial equals zero


3x² − 3x + 1 = 0

∴ 3x² − 3x = -1

∴ x² − x = -1/3

∴ x² − x + (-1/2)² = (-1/2)² − 1/3

given x² + bx + (b/2)² = (x + b/2)²

∴ (x − 1/2)² = 1/4 − 1/3

∴ (x − 1/2)² = 3/12 − 4/12

∴ (x − 1/2)² = -1/12

∴ x − 1/2 = ±√(-1/12)

This tells us there are no real roots and if you need real number solutions we stop here

∴ x − 1/2 = ±i/(2√3)

∴ x − 1/2 = ±i√(3)/6

∴ x = 1/2 ± i√(3)/6

∴ x = 3/6 ± i√(3)/6

∴ x = (3 − i√3)/6 and (3 + i√3)/6 <= the 2 complex roots


User GrayedFox
by
8.2k points
4 votes

For this case we have the following polynomial:


3x^2 - 3x + 1

Applying the formula of the resolvent we have:


x=(-b+/-√(b^2-4ac))/(2a)

Substituting values we have:


x=(-(-3)+/-√((-3)^2-4(3)(1)))/(2(3))

Rewriting we have:


x=(3+/-√(9-12))/(6)


x=(3+/-√(-3))/(6)


x=(3+/-i√(3))/(6)

Therefore, the roots of the polynomial are given by:


x=(3+i√(3))/(6)


x=(3-i√(3))/(6)

Answer:

The values of x that are roots of the polynomial are:


x=(3+i√(3))/(6)


x=(3-i√(3))/(6)

User Dinjas
by
8.3k points

No related questions found