75.2k views
1 vote
PLEASE HELP!! PLEASE.

Instructions: Drag the tiles to the correct boxes to complete the pairs. Not all tiles will be used.

Match the parabolas represented by the equations with their vertices.

PLEASE HELP!! PLEASE. Instructions: Drag the tiles to the correct boxes to complete-example-1
User Jiho Kang
by
5.2k points

2 Answers

7 votes

it would be a c e and f

User Sahil Gupta
by
6.9k points
3 votes

Answer:

(-1.75, -1.125) → y = 2x² + 7x + 5

(-3, -1) → y = x² + 6x + 8

(-4, -4)y = 2x² + 16x + 28

(2.5, 20.25) → y = -x² + 5x + 14

Explanation:

We have to find the vertices of the parabolas given in the picture.

A). y = x² + 6x + 8

We will convert this equation into vertex form as y = (x - h)² + k

then vertex will be (h, k)

y = x² + 6x + 8

y + 1 = x² + 6x + 9

y + 1 = (x + 3)²

y = (x + 3)² - 1

y = [x - (-3)]² + (-1)

So vertex will be (-3, -1)

B). y = 2x² + 16x + 28

y = 2[x² + 8x + 14]

y = 2[x² + 8x + 16 - 2]

y = 2[(x + 4)²- 2]

y = 2[{x -(-4)}² - 2]

y = [2{x-(-4)}²] - 4

Therefore, vertex will be (-4, -4)

C). y = -x² + 5x + 14

y = -[x² - 5x - 14]

y = -[x² - 2(2.5x) - (2.5)²+ (2.5)² - 14]

y = -[(x - 2.5)² - 6.25 - 14]

y = -[(x - 2.5)² - 20.25]

Therefore, vertex will be (-2.5, - 20.25)

D). y = -x² + 7x + 7

y = -[x² - 7x - 7]

y = -[ x² - 2(3.5)x + (3.5)²- (3.5)²- 7]

y = -[(x - 3.5)²-12.25 - 7]

y = -[(x - 3.5)² - 19.5]

Therefore, vertex will be (-3.5, 19.5)

E). y = 2x² + 7x + 5

y = 2[x² + (3.5)x + 2.5]

y = 2[x²+ 2(1.75)x + (1.75)²-(1.75)² + 2.5]

y = 2[(x + 1.75)²- 3.0625 + 2.5]

y = 2[{x + 1.75)² - 0.5625]

y = 2(x + 1.75)² - 1.125

therefore, vertex will be (-1.75, 1.125)

User Dominic Jonas
by
5.8k points