96.6k views
4 votes
Please answer the question

Please answer the question-example-1

2 Answers

5 votes

The angles of a triangle sum up to
180^\circ. So, if you know two of them (let's say
\alpha and
\beta), you can find the third angle
\gamma by subtraction:



\alpha +\beta +\gamma = 180^\circ \iff \gamma = 180^\circ-\alpha -\beta = 180^\circ-(\alpha +\beta)


So, in the first case, the given angles sum to
120^\circ, so the remaining one must be
60^\circ


In the second case, the given angles sum to
19^\circ, so the remaining one must be
161^\circ


In the third case, the given angles sum to
108^\circ, so the remaining one must be
72^\circ


In the fourth case, the given angles sum to
159^\circ, so the remaining one must be
21^\circ


Finally, the triangle with two sides of the same length is the one with two angles of the same measure, so the third one, which is isosceles.

User Timmy Otool
by
6.2k points
6 votes
I believe it is number iii #3
User Tipx
by
5.4k points