Answer: A.
![\cos L=(5)/(13)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ssis7wpvptaadn8cyvkpe7vygp9zyc15vn.png)
Explanation:
For angle y in a right triangle ,the trigonometric ratio of cos y is given by :-
![\cos y=\frac{\text{side adjacent to y}}{\text{Hypotenuse}}](https://img.qammunity.org/2019/formulas/mathematics/high-school/ewtilis1cbhroocpoxxhdvjal7cc99294o.png)
Given: The side adjacent to angle L= 5 units
The side opposite to angle L = 12 units
Let h be the hypotenuse, then using Pythagoras in the given right triangle, we get
Thus, hypotenuse = 13 units
Now, the trigonometric ratio for cos L is given by :-
![\cos L=\frac{\text{side adjacent to L}}{\text{Hypotenuse}}\\\\\Rightarrow\cos L=(5)/(13)=(5)/(13)](https://img.qammunity.org/2019/formulas/mathematics/high-school/oc3l8sei6y1eiih9124vdnqjj3v0auv39s.png)
Hence, the value of cos L =