We can use following formula
![tan^(2)(A) = (1- cos(2A))/(1+cos(2A)) \\ \\ tan(A) =2, so \\ \\4= (1- cos(2A))/(1+cos(2A)) \\ \\1-cos(2A)=4+4cos(2A) \\ \\ 5cos(2A) = -3 \\ \\ cos (2A) = -3/5](https://img.qammunity.org/2019/formulas/mathematics/high-school/1fer3xozpex1bzgz24c8t8e3jtl2ha219s.png)
Now, we need to find sin(2A).
![sin^(2)(2A) + cos^(2)(2A) = 1 \\ \\ sin^(2)(2A) + (- (3)/(5))^(2) =1 \\ \\ sin^(2)(2A) =1 - (9)/(25) \\ \\ sin^(2)(2A) = (16)/(25) \\ \\ sin(2A) = (4)/(5) \ or \ - (4)/(5)](https://img.qammunity.org/2019/formulas/mathematics/high-school/y4y8pd68s3mk59ff03l9ge6g8n382r8p8n.png)
Because, the angle A is in the 1st quadrant, and cos(2A) is negative, that means that the angle 2A is in the 2nd quadrant and sin(2A) is a positive number,so sin(2A) = 4/5.
sin(2A) = 4/5
cos(2A) = -3/5