Let u = x+2. That makes our equation, in terms of u:
![u^2+12u-14=0](https://img.qammunity.org/2019/formulas/mathematics/high-school/xrumwpnefiirx8wfl932sz1ywrc7haqgrs.png)
. Fitting this into the quadratic formula looks like this:
![u= (-12+/- √(12^2-4(1)(-14)) )/(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/r75tu5eb6wvb04w7elznzlb7ardianzabu.png)
. Simplifying a bit gives us
![u= (-12+/- √(200) )/(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/3laz0krxkkeoglkpoqf2gyiubo5vmi8ibl.png)
. Simplifying that in terms of the radical gives us
![u= (-12+/-10 √(2) )/(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/ati9db7iohvd3m9b1ansy3ij24zpqcvxs1.png)
. Reducing that numerator by the 2 in the denominator gives us
![u=-6+5 √(2),-6-5 √(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/aski52oakdie9dwxfb8gmio9lrdsfwnx3l.png)
. If u = x + 2, then we make that substitution now to solve for x:
![x+2=-6+5 √(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/jpwoihsxtdy30oq5pwjr4nzwxnb2u6sydz.png)
and
![x=-10+5 √(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/7oq2pr6aaqadysm596zeiwf1h207p8v9vy.png)
;
![x+2=-6-5 √(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/jif4y6ry6ustupv7fzfw8cktwqijk6t9ly.png)
and
![x=-10-5 √(2)](https://img.qammunity.org/2019/formulas/mathematics/high-school/vmwbjh43bo61p74nxlugthqj97tb7tz5xf.png)